MTMR1, partial [Homo sapiens]
myotubularin family protein( domain architecture ID 10193451)
myotubularin family protein similar to myotubularin, a protein tyrosine phosphatase that dephosphorylates phosphatidylinositol 3-monophosphate (PI3P) and phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
Myotub-related | pfam06602 | Myotubularin-like phosphatase domain; This family represents the phosphatase domain within ... |
220-546 | 0e+00 | ||||||
Myotubularin-like phosphatase domain; This family represents the phosphatase domain within eukaryotic myotubularin-related proteins. Myotubularin is a dual-specific lipid phosphatase that dephosphorylates phosphatidylinositol 3-phosphate and phosphatidylinositol (3,5)-bi-phosphate. Mutations in gene encoding myotubularin-related proteins have been associated with disease. : Pssm-ID: 461958 [Multi-domain] Cd Length: 332 Bit Score: 593.30 E-value: 0e+00
|
||||||||||
PH-GRAM_MTMR1 | cd13358 | Myotubularian related 1 protein (MTMR1) Pleckstrin Homology-Glucosyltransferases, Rab-like ... |
104-203 | 1.02e-69 | ||||||
Myotubularian related 1 protein (MTMR1) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain; MTMR1 is a member of the myotubularin protein phosphatase gene family. MTMR1 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. MTMR1 contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, a coiled-coil region, and a C-terminal PDZ domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. : Pssm-ID: 270165 Cd Length: 100 Bit Score: 221.70 E-value: 1.02e-69
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
Myotub-related | pfam06602 | Myotubularin-like phosphatase domain; This family represents the phosphatase domain within ... |
220-546 | 0e+00 | ||||||
Myotubularin-like phosphatase domain; This family represents the phosphatase domain within eukaryotic myotubularin-related proteins. Myotubularin is a dual-specific lipid phosphatase that dephosphorylates phosphatidylinositol 3-phosphate and phosphatidylinositol (3,5)-bi-phosphate. Mutations in gene encoding myotubularin-related proteins have been associated with disease. Pssm-ID: 461958 [Multi-domain] Cd Length: 332 Bit Score: 593.30 E-value: 0e+00
|
||||||||||
PTP-MTMR1 | cd14592 | protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase ... |
283-531 | 0e+00 | ||||||
protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 1; Myotubularin-related phosphoinositide phosphatase 1 (MTMR1) is enzymatically active and contains an N-terminal PH-GRAM domain, a C-terminal coiled-coiled domain and a PDZ binding site. MTMR1 is associated with myotonic dystrophy. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. Pssm-ID: 350440 Cd Length: 249 Bit Score: 574.23 E-value: 0e+00
|
||||||||||
PH-GRAM_MTMR1 | cd13358 | Myotubularian related 1 protein (MTMR1) Pleckstrin Homology-Glucosyltransferases, Rab-like ... |
104-203 | 1.02e-69 | ||||||
Myotubularian related 1 protein (MTMR1) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain; MTMR1 is a member of the myotubularin protein phosphatase gene family. MTMR1 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. MTMR1 contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, a coiled-coil region, and a C-terminal PDZ domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. Pssm-ID: 270165 Cd Length: 100 Bit Score: 221.70 E-value: 1.02e-69
|
||||||||||
PTPc_motif | smart00404 | Protein tyrosine phosphatase, catalytic domain motif; |
407-531 | 8.15e-09 | ||||||
Protein tyrosine phosphatase, catalytic domain motif; Pssm-ID: 214649 [Multi-domain] Cd Length: 105 Bit Score: 53.52 E-value: 8.15e-09
|
||||||||||
GRAM | smart00568 | domain in glucosyltransferases, myotubularins and other putative membrane-associated proteins; |
96-158 | 1.20e-08 | ||||||
domain in glucosyltransferases, myotubularins and other putative membrane-associated proteins; Pssm-ID: 214725 [Multi-domain] Cd Length: 60 Bit Score: 51.44 E-value: 1.20e-08
|
||||||||||
GRAM | pfam02893 | GRAM domain; The GRAM domain is found in in glucosyltransferases, myotubularins and other ... |
112-203 | 1.36e-05 | ||||||
GRAM domain; The GRAM domain is found in in glucosyltransferases, myotubularins and other putative membrane-associated proteins. Note the alignment is lacking the last two beta strands and alpha helix. Pssm-ID: 397160 Cd Length: 112 Bit Score: 44.66 E-value: 1.36e-05
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
Myotub-related | pfam06602 | Myotubularin-like phosphatase domain; This family represents the phosphatase domain within ... |
220-546 | 0e+00 | ||||||
Myotubularin-like phosphatase domain; This family represents the phosphatase domain within eukaryotic myotubularin-related proteins. Myotubularin is a dual-specific lipid phosphatase that dephosphorylates phosphatidylinositol 3-phosphate and phosphatidylinositol (3,5)-bi-phosphate. Mutations in gene encoding myotubularin-related proteins have been associated with disease. Pssm-ID: 461958 [Multi-domain] Cd Length: 332 Bit Score: 593.30 E-value: 0e+00
|
||||||||||
PTP-MTMR1 | cd14592 | protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase ... |
283-531 | 0e+00 | ||||||
protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 1; Myotubularin-related phosphoinositide phosphatase 1 (MTMR1) is enzymatically active and contains an N-terminal PH-GRAM domain, a C-terminal coiled-coiled domain and a PDZ binding site. MTMR1 is associated with myotonic dystrophy. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. Pssm-ID: 350440 Cd Length: 249 Bit Score: 574.23 E-value: 0e+00
|
||||||||||
PTP-MTM1-like | cd14535 | protein tyrosine phosphatase-like domain of myotubularin, and myotubularin related ... |
283-531 | 0e+00 | ||||||
protein tyrosine phosphatase-like domain of myotubularin, and myotubularin related phosphoinositide phosphatases 1 and 2; This subgroup of enzymatically active phosphatase domains of myotubularins consists of MTM1, MTMR1 and MTMR2. All contain an additional N-terminal PH-GRAM domain and C-terminal coiled-coiled domain and PDZ binding site. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. Pssm-ID: 350383 Cd Length: 249 Bit Score: 540.11 E-value: 0e+00
|
||||||||||
PTP-MTMR2 | cd14590 | protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase ... |
270-531 | 0e+00 | ||||||
protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 2; Myotubularin related phosphoinositide phosphatase 2 (MTMR2) is enzymatically active and contains an additional N-terminal PH-GRAM domain and C-terminal coiled-coiled domain and PDZ binding site. Mutations in MTMR2 causes Charcot-Marie-Tooth type 4B1, a severe childhood-onset neuromuscular disorder, characterized by demyelination and redundant loops of myelin known as myelin outfoldings, a similar phenotype as mutations in MTMR13. MTMR13, an inactive phosphatase, is believed to interact with MTMR2 and stimulate its phosphatase activity. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. Pssm-ID: 350438 Cd Length: 262 Bit Score: 526.52 E-value: 0e+00
|
||||||||||
PTP-MTM1 | cd14591 | protein tyrosine phosphatase-like domain of myotubularin phosphoinositide phosphatase 1; ... |
284-531 | 4.54e-160 | ||||||
protein tyrosine phosphatase-like domain of myotubularin phosphoinositide phosphatase 1; Myotubularin phosphoinositide phosphatase 1 (MTM1), also called myotubularin, is enzymatically active and contains an N-terminal PH-GRAM domain and C-terminal coiled-coiled domain and PDZ binding site. Mutations in MTM1 cause X-linked myotubular myopathy. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. Pssm-ID: 350439 Cd Length: 249 Bit Score: 459.88 E-value: 4.54e-160
|
||||||||||
PTP-MTMR6-like | cd14532 | protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatases ... |
229-532 | 1.53e-134 | ||||||
protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatases 6, 7, and 8; This subgroup of enzymatically active phosphatase domains of myotubularins consists of MTMR6, MTMR7 and MTMR8, and related domains. Beside the phosphatase domain, they contain a C-terminal coiled-coil domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. MTMR6, MTMR7 and MTMR8 form complexes with catalytically inactive MTMR9, and display differential substrate preferences. In cells, the MTMR6/R9 complex significantly increases the cellular levels of PtdIns(5)P, the product of PI(3,5)P(2) dephosphorylation, whereas the MTMR8/R9 complex reduces cellular PtdIns(3)P levels. The MTMR6/R9 complex serves to inhibit stress-induced apoptosis while the MTMR8/R9 complex inhibits autophagy. Pssm-ID: 350380 [Multi-domain] Cd Length: 301 Bit Score: 396.71 E-value: 1.53e-134
|
||||||||||
PTP-MTM-like | cd14507 | protein tyrosine phosphatase-like domain of myotubularins; Myotubularins are a unique subgroup ... |
283-507 | 2.84e-134 | ||||||
protein tyrosine phosphatase-like domain of myotubularins; Myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. Not all members are catalytically active proteins, some function as adaptors for the active members. Pssm-ID: 350357 Cd Length: 226 Bit Score: 393.07 E-value: 2.84e-134
|
||||||||||
PTP-MTMR8 | cd14584 | protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase ... |
223-532 | 5.30e-113 | ||||||
protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 8; Myotubularin related phosphoinositide phosphatase 8 (MTMR8) is enzymatically active and contains a C-terminal coiled-coil domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. MTMR8 forms a complex with catalytically inactive MTMR9 and preferentially dephosphorylates PtdIns(3)P; the MTMR8/R9 complex inhibits autophagy. In zebrafish, it cooperates with PI3K to regulate actin filament modeling and muscle development. Pssm-ID: 350432 [Multi-domain] Cd Length: 308 Bit Score: 341.85 E-value: 5.30e-113
|
||||||||||
PTP-MTMR6 | cd14585 | protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase ... |
232-532 | 1.27e-103 | ||||||
protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 6; Myotubularin related phosphoinositide phosphatase 6 is enzymatically active and contains a C-terminal coiled-coil domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. MTMR6 forms a complex with catalytically inactive MTMR9 and preferentially dephosphorylates PtdIns(3,5)P(2); the MTMR6/R9 complex serves to inhibit stress-induced apoptosis. Pssm-ID: 350433 [Multi-domain] Cd Length: 302 Bit Score: 317.26 E-value: 1.27e-103
|
||||||||||
PTP-MTMR7 | cd14583 | protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase ... |
231-532 | 5.33e-100 | ||||||
protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 7; Myotubularin related phosphoinositide phosphatase 7 (MTMR7) is enzymatically active and contains a C-terminal coiled-coil domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. In neuronal cells, MTMR7 forms a complex with catalytically inactive MTMR9 and dephosphorylates phosphatidylinositol 3-phosphate and Ins(1,3)P2. Pssm-ID: 350431 [Multi-domain] Cd Length: 302 Bit Score: 308.04 E-value: 5.33e-100
|
||||||||||
PTP-MTMR3-like | cd14533 | protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatases ... |
283-507 | 1.88e-82 | ||||||
protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatases 3 and 4; This subgroup of enzymatically active phosphatase domains of myotubularins consists of MTMR3, also known as ZFYVE10, and MTMR4, also known as ZFYVE11, and related domains. Beside the phosphatase domain, they contain a C-terminal FYVE domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. Pssm-ID: 350381 Cd Length: 229 Bit Score: 259.64 E-value: 1.88e-82
|
||||||||||
PTP-MTMR3 | cd14586 | protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase ... |
240-507 | 3.81e-80 | ||||||
protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 3; Myotubularin related phosphoinositide phosphatase 3 (MTMR3), also known as FYVE domain-containing dual specificity protein phosphatase 1 (FYVE-DSP1) or Zinc finger FYVE domain-containing protein 10 (ZFYVE10), is enzymatically active and contains a C-terminal FYVE domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. Together with phosphoinositide 5-kinase PIKfyve, phosphoinositide 3-phosphatase MTMR3 constitutes a phosphoinositide loop that produces PI(5)P via PI(3,5)P2 and regulates cell migration. Pssm-ID: 350434 Cd Length: 317 Bit Score: 256.87 E-value: 3.81e-80
|
||||||||||
PTP-MTMR4 | cd14587 | protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase ... |
243-507 | 5.91e-78 | ||||||
protein tyrosine phosphatase-like domain of myotubularin related phosphoinositide phosphatase 4; Myotubularin related phosphoinositide phosphatase 4 (MTMR4), also known as FYVE domain-containing dual specificity protein phosphatase 2 (FYVE-DSP2) or zinc finger FYVE domain-containing protein 11 (ZFYVE11), is enzymatically active and contains a C-terminal FYVE domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. MTMR4 localizes at the interface of early and recycling endosomes to regulate trafficking through this pathway. It plays a role in bacterial pathogenesis by stabilizing the integrity of bacteria-containing vacuoles. Pssm-ID: 350435 [Multi-domain] Cd Length: 308 Bit Score: 251.11 E-value: 5.91e-78
|
||||||||||
PTP-MTM-like_fungal | cd17666 | protein tyrosine phosphatase-like domain of fungal myotubularins; Myotubularins are a unique ... |
283-507 | 1.29e-71 | ||||||
protein tyrosine phosphatase-like domain of fungal myotubularins; Myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. They dephosphorylate the D-3 position of phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], generating phosphatidylinositol and phosphatidylinositol 5-phosphate [PI(5)P], respectively. Not all members are catalytically active proteins, some function as adaptors for the active members. Pssm-ID: 350504 Cd Length: 229 Bit Score: 231.56 E-value: 1.29e-71
|
||||||||||
PH-GRAM_MTMR1 | cd13358 | Myotubularian related 1 protein (MTMR1) Pleckstrin Homology-Glucosyltransferases, Rab-like ... |
104-203 | 1.02e-69 | ||||||
Myotubularian related 1 protein (MTMR1) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain; MTMR1 is a member of the myotubularin protein phosphatase gene family. MTMR1 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. MTMR1 contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, a coiled-coil region, and a C-terminal PDZ domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. Pssm-ID: 270165 Cd Length: 100 Bit Score: 221.70 E-value: 1.02e-69
|
||||||||||
PTP-MTMR9 | cd14536 | protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related ... |
283-507 | 4.23e-67 | ||||||
protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatase 9; Myotubularin related phosphoinositide phosphatase 9 (MTMR9) is enzymatically inactive and contains a C-terminal coiled-coil domain and an N-terminal PH-GRAM domain. Mutations have been associated with obesity and metabolic syndrome. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR9 is a pseudophosphatase that lacks the catalytic cysteine in its catalytic pocket. It forms complexes with catalytically active MTMR6, MTMR7 and MTMR8, and regulates their activities; the complexes display differential substrate preferences. The MTMR6/R9 complex serves to inhibit stress-induced apoptosis while the MTMR8/R9 complex inhibits autophagy. Pssm-ID: 350384 Cd Length: 224 Bit Score: 219.13 E-value: 4.23e-67
|
||||||||||
PTP-MTMR5-like | cd14534 | protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related ... |
243-511 | 2.35e-60 | ||||||
protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatases 5 and 13; This subgroup of enzymatically inactive phosphatase domains of myotubularins consists of MTMR5, also known as SET binding factor 1 (SBF1) and MTMR13, also known as SET binding factor 2 (SBF2), and similar domains. Beside the pseudophosphatase domain, they contain a variety of other domains, including a DENN and a PH-like domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR5 and MTMR13 are pseudophosphatases that lack the catalytic cysteine in their catalytic pocket. Mutations in MTMR13 causes Charcot-Marie-Tooth type 4B2, a severe childhood-onset neuromuscular disorder, characterized by demyelination and redundant loops of myelin known as myelin outfoldings, a similar phenotype as mutations in MTMR2. Mutations in the MTMR5 gene cause Charcot-Marie-tooth disease type 4B3. MTMR5 and MTMR13 interact with MTMR2 and stimulate its phosphatase activity. Pssm-ID: 350382 [Multi-domain] Cd Length: 274 Bit Score: 203.37 E-value: 2.35e-60
|
||||||||||
PH-GRAM_MTM-like | cd13223 | Myotubularian 1 and related proteins Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase; ... |
105-203 | 2.73e-52 | ||||||
Myotubularian 1 and related proteins Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase; MTM1, MTMR1, and MTMR2 are members of the myotubularin protein phosphatase gene family. They contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, and a C-terminal coiled-coil region. In addition MTMR1 (Myotubularian related 1 protein) and MTMR2 (Myotubularian related 2 protein) contain a C-terminal PDZ domain. Mutations in MTMR2 are a cause of Charcot-Marie-Tooth disease type 4B, an autosomal recessive demyelinating neuropathy. The protein can self-associate and form heteromers with MTMR5 and MTMR12. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. Pssm-ID: 275407 Cd Length: 100 Bit Score: 175.12 E-value: 2.73e-52
|
||||||||||
PH-GRAM_MTMR2_mammal-like | cd13356 | Myotubularian related 2 protein (MTMR2) Pleckstrin Homology-Glucosyltransferases, Rab-like ... |
92-205 | 1.05e-49 | ||||||
Myotubularian related 2 protein (MTMR2) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain; MTMR2 is a member of the myotubularin protein phosphatase gene family. MTMR2 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. Mutations in MTMR2 are a cause of Charcot-Marie-Tooth disease type 4B, an autosomal recessive demyelinating neuropathy. The protein can self-associate and form heteromers with MTMR5 and MTMR12. MTMR2 contains a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, a coiled-coil region, and a C-terminal PDZ domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date.Members in this cd include mammals, chickens, anoles, human body lice, and aphids. Pssm-ID: 270163 Cd Length: 115 Bit Score: 168.71 E-value: 1.05e-49
|
||||||||||
PTP-MTMR13 | cd14589 | protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related ... |
243-511 | 1.13e-46 | ||||||
protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatase 13; Myotubularin related phosphoinositide phosphatase 13 (MTMR13), also known as SET binding factor 2 (SBF2), is enzymatically inactive and contains a variety of other domains, including a DENN and a PH-like domain. Mutations in MTMR13 causes Charcot-Marie-Tooth type 4B2, a severe childhood-onset neuromuscular disorder, characterized by demyelination and redundant loops of myelin known as myelin outfoldings, a similar phenotype as mutations in MTMR2. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR13 is a pseudophosphatase that lacks the catalytic cysteine in its catalytic pocket. It is believed to interact with MTMR2 and stimulate its phosphatase activity. It is also a guanine nucleotide exchange factor (GEF) which may activate RAB28, promoting the exchange of GDP to GTP and converting inactive GDP-bound Rab proteins into their active GTP-bound form. Pssm-ID: 350437 Cd Length: 297 Bit Score: 167.02 E-value: 1.13e-46
|
||||||||||
PTP-MTMR5 | cd14588 | protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related ... |
243-511 | 1.81e-46 | ||||||
protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatase 5; Myotubularin related phosphoinositide phosphatase 5 (MTMR5), also known as SET binding factor 1 (SBF1), is enzymatically inactive and contains a variety of other domains, including a DENN and a PH-like domain. Mutations in the MTMR5 gene cause Charcot-Marie-tooth disease type 4B3. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR5 is a pseudophosphatase that lacks the catalytic cysteine in its catalytic pocket. It interacts with MTMR2, an active myotubularin related phosphatidylinositol phosphatase, regulates its enzymatic activity and subcellular location. Pssm-ID: 350436 [Multi-domain] Cd Length: 291 Bit Score: 166.30 E-value: 1.81e-46
|
||||||||||
PH-GRAM_MTMR2_insect-like | cd13357 | Myotubularian related 2 protein (MTMR2) Pleckstrin Homology-Glucosyltransferases, Rab-like ... |
105-203 | 3.39e-43 | ||||||
Myotubularian related 2 protein (MTMR2) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain; MTMR2 is a member of the myotubularin protein phosphatase gene family. MTMR2 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. Mutations in MTMR2 are a cause of Charcot-Marie-Tooth disease type 4B, an autosomal recessive demyelinating neuropathy. The protein can self-associate and form heteromers with MTMR5 and MTMR12. MTMR2 contains a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, a coiled-coil region, and a C-terminal PDZ domain. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. The PH domain family possesses multiple functions including the ability to bind phosphoinositides via its beta1/beta2, beta3/beta4, and beta6/beta7 connecting loops and to other proteins. However, no phosphoinositide binding sites have been found for the MTMRs to date. Members in this cd include Drosophila, sea urchins, mosquitos, bees, ticks, and anemones. Pssm-ID: 270164 Cd Length: 100 Bit Score: 150.73 E-value: 3.39e-43
|
||||||||||
PH-GRAM_MTM1 | cd13355 | Myotubularian 1 protein (MTM1) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase ... |
108-203 | 4.69e-40 | ||||||
Myotubularian 1 protein (MTM1) Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain; MTM1 is a member of the myotubularin protein phosphatase gene family. It is required for muscle cell differentiation and mutations in this gene have been identified as being responsible for X-linked myotubular myopathy, a severe congenital muscle disorder characterized by defective muscle cell development. Since its initial discovery, there have been an additional 14 myotubularin-related proteins identified. MTM1 binds to phosphoinositide lipids through its PH-GRAM domain, and can hydrolyze phosphatidylinositol(3)-phosphate and phosphatidylinositol(3,5)-biphosphate in vitro. The protein can self-associate and form heteromers with MTMR12. MTM1 contains a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, an active PTP domain, a SET-interaction domain, and a C-terminal coiled-coil region. Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. All MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE and PH domains C-terminal to the coiled-coil region. Pssm-ID: 270162 Cd Length: 100 Bit Score: 141.92 E-value: 4.69e-40
|
||||||||||
PTP-MTMR10-like | cd14537 | protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related ... |
283-507 | 3.35e-38 | ||||||
protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatases 10, 11, and 12; This subgroup of enzymatically inactive phosphatase domains of myotubularins consists of MTMR10, MTMR11, MTMR12, and similar proteins. Beside the phosphatase domain, they contain an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR10, MTMR11, and MTMR12 are pseudophosphatases that lack the catalytic cysteine in their catalytic pocket. MTMR12 functions as an adapter for the catalytically active myotubularin to regulate its intracellular location. Pssm-ID: 350385 Cd Length: 200 Bit Score: 140.17 E-value: 3.35e-38
|
||||||||||
PTP-MTMR11 | cd14595 | protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related ... |
283-508 | 2.65e-30 | ||||||
protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatase 11; Myotubularin related phosphoinositide phosphatase 11 (MTMR11), also called cisplatin resistance-associated protein (hCRA) in humans, is enzymatically inactive and contains a C-terminal coiled-coil domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR11 is a pseudophosphatase that lacks the catalytic cysteine in its catalytic pocket. Pssm-ID: 350443 Cd Length: 195 Bit Score: 118.01 E-value: 2.65e-30
|
||||||||||
PTP-MTMR10 | cd14593 | protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related ... |
283-507 | 1.83e-29 | ||||||
protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatase 10; Myotubularin related phosphoinositide phosphatase 10 (MTMR10) is enzymatically inactive and contains an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR10 is a pseudophosphatase that lacks the catalytic cysteine in its catalytic pocket. Pssm-ID: 350441 Cd Length: 195 Bit Score: 115.76 E-value: 1.83e-29
|
||||||||||
PTP-MTMR12 | cd14594 | protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related ... |
396-508 | 2.35e-27 | ||||||
protein tyrosine phosphatase-like pseudophosphatase domain of myotubularin related phosphoinositide phosphatase 12; Myotubularin related phosphoinositide phosphatase 12 (MTMR12), also called phosphatidylinositol 3 phosphate 3-phosphatase adapter subunit (3-PAP), is enzymatically inactive and contains a C-terminal coiled-coil domain and an N-terminal PH-GRAM domain. In general, myotubularins are a unique subgroup of protein tyrosine phosphatases that use inositol phospholipids, rather than phosphoproteins, as substrates. MTMR12 is a pseudophosphatase that lacks the catalytic cysteine in its catalytic pocket. It functions as an adapter for the catalytically active myotubularin to regulate its intracellular location. Pssm-ID: 350442 Cd Length: 203 Bit Score: 109.93 E-value: 2.35e-27
|
||||||||||
PTPc_motif | smart00404 | Protein tyrosine phosphatase, catalytic domain motif; |
407-531 | 8.15e-09 | ||||||
Protein tyrosine phosphatase, catalytic domain motif; Pssm-ID: 214649 [Multi-domain] Cd Length: 105 Bit Score: 53.52 E-value: 8.15e-09
|
||||||||||
PTPc_DSPc | smart00012 | Protein tyrosine phosphatase, catalytic domain, undefined specificity; Protein tyrosine ... |
407-531 | 8.15e-09 | ||||||
Protein tyrosine phosphatase, catalytic domain, undefined specificity; Protein tyrosine phosphatases. Homologues detected by this profile and not by those of "PTPc" or "DSPc" are predicted to be protein phosphatases with a similar fold to DSPs and PTPs, yet with unpredicted specificities. Pssm-ID: 214469 [Multi-domain] Cd Length: 105 Bit Score: 53.52 E-value: 8.15e-09
|
||||||||||
PH-GRAM | cd10570 | Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins ... |
106-197 | 9.34e-09 | ||||||
Pleckstrin Homology-Glucosyltransferases, Rab-like GTPase activators and Myotubularins (PH-GRAM) domain; Myotubularin-related proteins are a subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in this family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. 6 of the 13 MTMRs (MTMRs 5, 9-13) contain naturally occurring substitutions of residues required for catalysis by PTP family enzymes. Although these proteins are predicted to be enzymatically inactive, they are thought to function as antagonists of endogenous phosphatase activity or interaction modules. Most MTMRs contain a N-terminal PH-GRAM domain, a Rac-induced recruitment domain (RID) domain, a PTP domain (which may be active or inactive), a SET-interaction domain, and a C-terminal coiled-coil region. In addition some members contain DENN domain N-terminal to the PH-GRAM domain and FYVE, PDZ, and PH domains C-terminal to the coiled-coil region. The GRAM domain, found in myotubularins, glucosyltransferases, and other putative membrane-associated proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. Pssm-ID: 275393 Cd Length: 94 Bit Score: 53.15 E-value: 9.34e-09
|
||||||||||
GRAM | smart00568 | domain in glucosyltransferases, myotubularins and other putative membrane-associated proteins; |
96-158 | 1.20e-08 | ||||||
domain in glucosyltransferases, myotubularins and other putative membrane-associated proteins; Pssm-ID: 214725 [Multi-domain] Cd Length: 60 Bit Score: 51.44 E-value: 1.20e-08
|
||||||||||
PTP_DSP_cys | cd14494 | cys-based protein tyrosine phosphatase and dual-specificity phosphatase superfamily; This ... |
413-479 | 1.28e-06 | ||||||
cys-based protein tyrosine phosphatase and dual-specificity phosphatase superfamily; This superfamily is composed of cys-based phosphatases, which includes classical protein tyrosine phosphatases (PTPs) as well as dual-specificity phosphatases (DUSPs or DSPs). They are characterized by a CxxxxxR conserved catalytic loop (where C is the catalytic cysteine, x is any amino acid, and R is an arginine). PTPs are part of the tyrosine phosphorylation/dephosphorylation regulatory mechanism, and are important in the response of the cells to physiologic and pathologic changes in their environment. DUSPs show more substrate diversity (including RNA and lipids) and include pTyr, pSer, and pThr phosphatases. Pssm-ID: 350344 [Multi-domain] Cd Length: 113 Bit Score: 47.34 E-value: 1.28e-06
|
||||||||||
GRAM | pfam02893 | GRAM domain; The GRAM domain is found in in glucosyltransferases, myotubularins and other ... |
112-203 | 1.36e-05 | ||||||
GRAM domain; The GRAM domain is found in in glucosyltransferases, myotubularins and other putative membrane-associated proteins. Note the alignment is lacking the last two beta strands and alpha helix. Pssm-ID: 397160 Cd Length: 112 Bit Score: 44.66 E-value: 1.36e-05
|
||||||||||
PH-like | cd00900 | Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like ... |
106-191 | 4.42e-03 | ||||||
Pleckstrin homology-like domain; The PH-like family includes the PH domain, both the Shc-like and IRS-like PTB domains, the ran-binding domain, the EVH1 domain, a domain in neurobeachin and the third domain of FERM. All of these domains have a PH fold, but lack significant sequence similarity. They are generally involved in targeting to protein to the appropriate cellular location or interacting with a binding partner. This domain family possesses multiple functions including the ability to bind inositol phosphates and to other proteins. Pssm-ID: 275390 Cd Length: 89 Bit Score: 36.61 E-value: 4.42e-03
|
||||||||||
Blast search parameters | ||||
|