KRAB (Kruppel-associated box) domain-containing zinc finger protein (KRAB-ZFP) plays important roles in cell differentiation and organ development and in regulating viral replication and transcription
KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression ...
6-45
9.31e-08
KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression module, found in a subgroup of the zinc finger proteins (ZFPs) of the C2H2 family, KRAB-ZFPs. KRAB-ZFPs comprise the largest group of transcriptional regulators in mammals, and are only found in tetrapods. These proteins have been shown to play important roles in cell differentiation and organ development, and in regulating viral replication and transcription. A KRAB domain may consist of an A-box, or of an A-box plus either a B-box, a divergent B-box (b), or a C-box. Only the A-box is included in this model. The A-box is needed for repression, the B- and C- boxes are not. KRAB-ZFPs have one or two KRAB domains at their amino-terminal end, and multiple C2H2 zinc finger motifs at their C-termini. Some KRAB-ZFPs also contain a SCAN domain which mediates homo- and hetero-oligomerization. The KRAB domain is a protein-protein interaction module which represses transcription through recruiting corepressors. A key mechanism appears to be the following: KRAB-AFPs tethered to DNA recruit, via their KRAB domain, the repressor KAP1 (KRAB-associated protein-1, also known as transcription intermediary factor 1 beta , KRAB-A interacting protein , and tripartite motif protein 28). The KAP1/ KRAB-AFP complex in turn recruits the heterochromatin protein 1 (HP1) family, and other chromatin modulating proteins, leading to transcriptional repression through heterochromatin formation.
:
Pssm-ID: 143639 Cd Length: 40 Bit Score: 48.70 E-value: 9.31e-08
KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression ...
6-45
9.31e-08
KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression module, found in a subgroup of the zinc finger proteins (ZFPs) of the C2H2 family, KRAB-ZFPs. KRAB-ZFPs comprise the largest group of transcriptional regulators in mammals, and are only found in tetrapods. These proteins have been shown to play important roles in cell differentiation and organ development, and in regulating viral replication and transcription. A KRAB domain may consist of an A-box, or of an A-box plus either a B-box, a divergent B-box (b), or a C-box. Only the A-box is included in this model. The A-box is needed for repression, the B- and C- boxes are not. KRAB-ZFPs have one or two KRAB domains at their amino-terminal end, and multiple C2H2 zinc finger motifs at their C-termini. Some KRAB-ZFPs also contain a SCAN domain which mediates homo- and hetero-oligomerization. The KRAB domain is a protein-protein interaction module which represses transcription through recruiting corepressors. A key mechanism appears to be the following: KRAB-AFPs tethered to DNA recruit, via their KRAB domain, the repressor KAP1 (KRAB-associated protein-1, also known as transcription intermediary factor 1 beta , KRAB-A interacting protein , and tripartite motif protein 28). The KAP1/ KRAB-AFP complex in turn recruits the heterochromatin protein 1 (HP1) family, and other chromatin modulating proteins, leading to transcriptional repression through heterochromatin formation.
Pssm-ID: 143639 Cd Length: 40 Bit Score: 48.70 E-value: 9.31e-08
KRAB box; The KRAB domain (or Kruppel-associated box) is present in about a third of zinc ...
6-46
5.14e-06
KRAB box; The KRAB domain (or Kruppel-associated box) is present in about a third of zinc finger proteins containing C2H2 fingers. The KRAB domain is found to be involved in protein-protein interactions. The KRAB domain is generally encoded by two exons. The regions coded by the two exons are known as KRAB-A and KRAB-B. The A box plays an important role in repression by binding to corepressors, while the B box is thought to enhance this repression brought about by the A box. KRAB-containing proteins are thought to have critical functions in cell proliferation and differentiation, apoptosis and neoplastic transformation.
Pssm-ID: 460171 Cd Length: 42 Bit Score: 44.00 E-value: 5.14e-06
N-terminal domain of Oryza sativa transcription factor SUPPRESSOR OF FRI 4 (OsSUF4), ...
485-537
4.64e-03
N-terminal domain of Oryza sativa transcription factor SUPPRESSOR OF FRI 4 (OsSUF4), Arabidopsis thaliana SUF4 (AtSUF4), and similar proteins; Oryza sativa SUPPRESSOR OF FRI 4 (OsSUF4) is a C2H2-type zinc finger transcription factor which interacts with the major H3K36 methyltransferase SDG725 to promote H3K36me3 (tri-methylation at H3K9) establishment. The transcription factor OsSUF4 recognizes a specific 7-bp DNA element (5'-CGGAAAT-3'), which is contained in the promoter regions of many genes throughout the rice genome. Through interaction with OsSUF4, SDG725 is recruited to the promoters of key florigen genes, RICE FLOWERING LOCUS T1 (RFT1) and Heading date 3a (Hd3a), for H3K36 deposition to promote gene activation and rice plant flowering. OsSUF4 target genes include a number of genes involved in many biological processes. Flowering plant Arabidopsis SUF4 binds to a 15bp DNA element (5'-CCAAATTTTAAGTTT-3') within the promoter of the floral repressor gene FLOWERING LOCUS C (FLC) and recruits the FRI-C transcription activator complex to the FLC promoter. Although the DNA-binding element and target genes of AtSUF4 are different from those of OsSUF4, AtSUF4 is known to interact with the Arabidopsis H3K36 methyltransferase SDG8 (also known as ASHH2/EFS/SET8), and the methylation deposition mechanism mediated by the SUF4 transcription factor and H3K36 methyltransferase may be conserved in Arabidopsis and rice. Proteins in this family have two conserved C2H2-type zinc finger motifs at the N-terminus (included in this model), and a large proline-rich domain at the C-terminus; for OsSUF4, it has been shown that the N-terminal zinc-finger domain is responsible for DNA binding, and that the C-terminal domain interacts with SDG725.
Pssm-ID: 411020 [Multi-domain] Cd Length: 82 Bit Score: 36.77 E-value: 4.64e-03
KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression ...
6-45
9.31e-08
KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression module, found in a subgroup of the zinc finger proteins (ZFPs) of the C2H2 family, KRAB-ZFPs. KRAB-ZFPs comprise the largest group of transcriptional regulators in mammals, and are only found in tetrapods. These proteins have been shown to play important roles in cell differentiation and organ development, and in regulating viral replication and transcription. A KRAB domain may consist of an A-box, or of an A-box plus either a B-box, a divergent B-box (b), or a C-box. Only the A-box is included in this model. The A-box is needed for repression, the B- and C- boxes are not. KRAB-ZFPs have one or two KRAB domains at their amino-terminal end, and multiple C2H2 zinc finger motifs at their C-termini. Some KRAB-ZFPs also contain a SCAN domain which mediates homo- and hetero-oligomerization. The KRAB domain is a protein-protein interaction module which represses transcription through recruiting corepressors. A key mechanism appears to be the following: KRAB-AFPs tethered to DNA recruit, via their KRAB domain, the repressor KAP1 (KRAB-associated protein-1, also known as transcription intermediary factor 1 beta , KRAB-A interacting protein , and tripartite motif protein 28). The KAP1/ KRAB-AFP complex in turn recruits the heterochromatin protein 1 (HP1) family, and other chromatin modulating proteins, leading to transcriptional repression through heterochromatin formation.
Pssm-ID: 143639 Cd Length: 40 Bit Score: 48.70 E-value: 9.31e-08
KRAB box; The KRAB domain (or Kruppel-associated box) is present in about a third of zinc ...
6-46
5.14e-06
KRAB box; The KRAB domain (or Kruppel-associated box) is present in about a third of zinc finger proteins containing C2H2 fingers. The KRAB domain is found to be involved in protein-protein interactions. The KRAB domain is generally encoded by two exons. The regions coded by the two exons are known as KRAB-A and KRAB-B. The A box plays an important role in repression by binding to corepressors, while the B box is thought to enhance this repression brought about by the A box. KRAB-containing proteins are thought to have critical functions in cell proliferation and differentiation, apoptosis and neoplastic transformation.
Pssm-ID: 460171 Cd Length: 42 Bit Score: 44.00 E-value: 5.14e-06
N-terminal domain of Oryza sativa transcription factor SUPPRESSOR OF FRI 4 (OsSUF4), ...
485-537
4.64e-03
N-terminal domain of Oryza sativa transcription factor SUPPRESSOR OF FRI 4 (OsSUF4), Arabidopsis thaliana SUF4 (AtSUF4), and similar proteins; Oryza sativa SUPPRESSOR OF FRI 4 (OsSUF4) is a C2H2-type zinc finger transcription factor which interacts with the major H3K36 methyltransferase SDG725 to promote H3K36me3 (tri-methylation at H3K9) establishment. The transcription factor OsSUF4 recognizes a specific 7-bp DNA element (5'-CGGAAAT-3'), which is contained in the promoter regions of many genes throughout the rice genome. Through interaction with OsSUF4, SDG725 is recruited to the promoters of key florigen genes, RICE FLOWERING LOCUS T1 (RFT1) and Heading date 3a (Hd3a), for H3K36 deposition to promote gene activation and rice plant flowering. OsSUF4 target genes include a number of genes involved in many biological processes. Flowering plant Arabidopsis SUF4 binds to a 15bp DNA element (5'-CCAAATTTTAAGTTT-3') within the promoter of the floral repressor gene FLOWERING LOCUS C (FLC) and recruits the FRI-C transcription activator complex to the FLC promoter. Although the DNA-binding element and target genes of AtSUF4 are different from those of OsSUF4, AtSUF4 is known to interact with the Arabidopsis H3K36 methyltransferase SDG8 (also known as ASHH2/EFS/SET8), and the methylation deposition mechanism mediated by the SUF4 transcription factor and H3K36 methyltransferase may be conserved in Arabidopsis and rice. Proteins in this family have two conserved C2H2-type zinc finger motifs at the N-terminus (included in this model), and a large proline-rich domain at the C-terminus; for OsSUF4, it has been shown that the N-terminal zinc-finger domain is responsible for DNA binding, and that the C-terminal domain interacts with SDG725.
Pssm-ID: 411020 [Multi-domain] Cd Length: 82 Bit Score: 36.77 E-value: 4.64e-03
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ...
646-668
8.99e-03
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter.
Pssm-ID: 395048 [Multi-domain] Cd Length: 23 Bit Score: 34.58 E-value: 8.99e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options