alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase C [Rattus norvegicus]
glycosyltransferase family 54 protein( domain architecture ID 10519914)
glycosyltransferase family 54 protein similar to alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase that participates in the transfer of N-acetylglucosamine (GlcNAc) to the core mannose residues of N-linked glycans
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
Glyco_transf_54 | pfam04666 | N-Acetylglucosaminyltransferase-IV (GnT-IV) conserved region; The complex-type of ... |
64-330 | 5.72e-103 | |||||
N-Acetylglucosaminyltransferase-IV (GnT-IV) conserved region; The complex-type of oligosaccharides are synthesized through elongation by glycosyltransferases after trimming of the precursor oligosaccharides transferred to proteins in the endoplasmic reticulum. N-Acetylglucosaminyltransferases (GnTs) take part in the formation of branches in the biosynthesis of complex-type sugar chains. In vertebrates, six GnTs, designated as GnT-I to -VI, which catalyze the transfer of GlcNAc to the core mannose residues of Asn-linked sugar chains, have been identified. GnT-IV (EC:2.4.1.145) catalyzes the transfer of GlcNAc from UDP-GlcNAc to the GlcNAc1-2Man1-3 arm of core oligosaccharide [Gn2(22)core oligosaccharide] and forms GlcNAc1-4(GlcNAc1-2)Man1-3 structure on the core oligosaccharide (Gn3(2,4,2)core oligosaccharide). In some members the conserved region occupies all but the very for N-terminal, where there is a signal sequence on all members. For other members the conserved region does not occupy the entire protein but is still to the N-terminus of the protein. : Pssm-ID: 461384 Cd Length: 278 Bit Score: 308.85 E-value: 5.72e-103
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
Glyco_transf_54 | pfam04666 | N-Acetylglucosaminyltransferase-IV (GnT-IV) conserved region; The complex-type of ... |
64-330 | 5.72e-103 | |||||
N-Acetylglucosaminyltransferase-IV (GnT-IV) conserved region; The complex-type of oligosaccharides are synthesized through elongation by glycosyltransferases after trimming of the precursor oligosaccharides transferred to proteins in the endoplasmic reticulum. N-Acetylglucosaminyltransferases (GnTs) take part in the formation of branches in the biosynthesis of complex-type sugar chains. In vertebrates, six GnTs, designated as GnT-I to -VI, which catalyze the transfer of GlcNAc to the core mannose residues of Asn-linked sugar chains, have been identified. GnT-IV (EC:2.4.1.145) catalyzes the transfer of GlcNAc from UDP-GlcNAc to the GlcNAc1-2Man1-3 arm of core oligosaccharide [Gn2(22)core oligosaccharide] and forms GlcNAc1-4(GlcNAc1-2)Man1-3 structure on the core oligosaccharide (Gn3(2,4,2)core oligosaccharide). In some members the conserved region occupies all but the very for N-terminal, where there is a signal sequence on all members. For other members the conserved region does not occupy the entire protein but is still to the N-terminus of the protein. Pssm-ID: 461384 Cd Length: 278 Bit Score: 308.85 E-value: 5.72e-103
|
|||||||||
PGAP4-like | cd21105 | Post-GPI attachment to proteins factor 4 and similar proteins; This family includes post-GPI ... |
29-267 | 3.77e-14 | |||||
Post-GPI attachment to proteins factor 4 and similar proteins; This family includes post-GPI attachment to proteins factor 4 (PGAP4), also known as post-GPI attachment to proteins GalNAc transferase 4 or transmembrane protein 246 (TMEM246). PGAP4 has been shown to be a Golgi-resident GPI-GalNAc transferase. Many eukaryotic proteins are anchored to the cell surface through glycolipid glycosylphosphatidylinositol (GPI). GPIs have a conserved core but exhibit diverse N-acetylgalactosamine (GalNAc) modifications. PGAP4 knockout cells lose GPI-GalNAc structures. PGAP4 is most likely involved in the initial steps of GPI-GalNAc biosynthesis. In contrast to other Golgi glycotransferases, it contains three transmembrane domains. This family also includes uncharacterized fungal proteins with similarity to PGAP4. Pssm-ID: 409189 Cd Length: 364 Bit Score: 73.57 E-value: 3.77e-14
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
Glyco_transf_54 | pfam04666 | N-Acetylglucosaminyltransferase-IV (GnT-IV) conserved region; The complex-type of ... |
64-330 | 5.72e-103 | |||||
N-Acetylglucosaminyltransferase-IV (GnT-IV) conserved region; The complex-type of oligosaccharides are synthesized through elongation by glycosyltransferases after trimming of the precursor oligosaccharides transferred to proteins in the endoplasmic reticulum. N-Acetylglucosaminyltransferases (GnTs) take part in the formation of branches in the biosynthesis of complex-type sugar chains. In vertebrates, six GnTs, designated as GnT-I to -VI, which catalyze the transfer of GlcNAc to the core mannose residues of Asn-linked sugar chains, have been identified. GnT-IV (EC:2.4.1.145) catalyzes the transfer of GlcNAc from UDP-GlcNAc to the GlcNAc1-2Man1-3 arm of core oligosaccharide [Gn2(22)core oligosaccharide] and forms GlcNAc1-4(GlcNAc1-2)Man1-3 structure on the core oligosaccharide (Gn3(2,4,2)core oligosaccharide). In some members the conserved region occupies all but the very for N-terminal, where there is a signal sequence on all members. For other members the conserved region does not occupy the entire protein but is still to the N-terminus of the protein. Pssm-ID: 461384 Cd Length: 278 Bit Score: 308.85 E-value: 5.72e-103
|
|||||||||
PGAP4-like | cd21105 | Post-GPI attachment to proteins factor 4 and similar proteins; This family includes post-GPI ... |
29-267 | 3.77e-14 | |||||
Post-GPI attachment to proteins factor 4 and similar proteins; This family includes post-GPI attachment to proteins factor 4 (PGAP4), also known as post-GPI attachment to proteins GalNAc transferase 4 or transmembrane protein 246 (TMEM246). PGAP4 has been shown to be a Golgi-resident GPI-GalNAc transferase. Many eukaryotic proteins are anchored to the cell surface through glycolipid glycosylphosphatidylinositol (GPI). GPIs have a conserved core but exhibit diverse N-acetylgalactosamine (GalNAc) modifications. PGAP4 knockout cells lose GPI-GalNAc structures. PGAP4 is most likely involved in the initial steps of GPI-GalNAc biosynthesis. In contrast to other Golgi glycotransferases, it contains three transmembrane domains. This family also includes uncharacterized fungal proteins with similarity to PGAP4. Pssm-ID: 409189 Cd Length: 364 Bit Score: 73.57 E-value: 3.77e-14
|
|||||||||
PGAP4-like_fungal | cd22189 | uncharacterized fungal proteins similar to Post-GPI attachment to proteins factor 4; This ... |
103-227 | 1.01e-10 | |||||
uncharacterized fungal proteins similar to Post-GPI attachment to proteins factor 4; This subfamily contains uncharacterized fungal proteins with similarity to animal post-GPI attachment to proteins factor 4 (PGAP4), also known as post-GPI attachment to proteins GalNAc transferase 4 or transmembrane protein 246 (TMEM246). PGAP4 has been shown to be a Golgi-resident GPI-GalNAc transferase. Many eukaryotic proteins are anchored to the cell surface through glycolipid glycosylphosphatidylinositol (GPI). GPIs have a conserved core but exhibit diverse N-acetylgalactosamine (GalNAc) modifications. PGAP4 knockout cells lose GPI-GalNAc structures. PGAP4 is most likely involved in the initial steps of GPI-GalNAc biosynthesis. In contrast to other Golgi glycotransferases, it contains three transmembrane domains. Proteins from this subfamily contain the putative catalytic site of PGAP4 and may have similar activities. Pssm-ID: 409190 Cd Length: 375 Bit Score: 63.33 E-value: 1.01e-10
|
|||||||||
PGAP4 | cd22190 | Post-GPI attachment to proteins factor 4; Post-GPI attachment to proteins factor 4 (PGAP4), ... |
186-265 | 2.72e-03 | |||||
Post-GPI attachment to proteins factor 4; Post-GPI attachment to proteins factor 4 (PGAP4), also known as post-GPI attachment to proteins GalNAc transferase 4 or transmembrane protein 246 (TMEM246), has been shown to be a Golgi-resident GPI-GalNAc transferase. Many eukaryotic proteins are anchored to the cell surface through glycolipid glycosylphosphatidylinositol (GPI). GPIs have a conserved core but exhibit diverse N-acetylgalactosamine (GalNAc) modifications. PGAP4 knockout cells lose GPI-GalNAc structures. PGAP4 is most likely involved in the initial steps of GPI-GalNAc biosynthesis. In contrast to other Golgi glycotransferases (GTs), it contains three transmembrane domains. Structural modeling suggests that PGAP4 adopts a GT-A fold split by an insertion of tandem transmembrane domains. Pssm-ID: 409191 Cd Length: 379 Bit Score: 39.89 E-value: 2.72e-03
|
|||||||||
Blast search parameters | ||||
|