NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|343478159|ref|NP_001230352|]
View 

kinesin-like protein KIF13A isoform e [Homo sapiens]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
Motor_domain super family cl22853
Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the ...
5-55 4.88e-13

Myosin and Kinesin motor domain; Myosin and Kinesin motor domain. These ATPases belong to the P-loop NTPase family and provide the driving force in myosin and kinesin mediated processes. Some of the names do not match with what is given in the sequence list. This is because they are based on the current nomenclature by Kollmar/Sebe-Pedros.


The actual alignment was detected with superfamily member cd01365:

Pssm-ID: 473979 [Multi-domain]  Cd Length: 361  Bit Score: 61.60  E-value: 4.88e-13
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 343478159   5 KVKVAVRVRPMNRRELELNTKCVVEMEGNQTVLHPPPSNTKQGERLVTVAH 55
Cdd:cd01365    2 NVKVAVRVRPFNSREKERNSKCIVQMSGKETTLKNPKQADKNNKATREVPK 52
 
Name Accession Description Interval E-value
KISc_KIF1A_KIF1B cd01365
Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A ...
5-55 4.88e-13

Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A (Unc104) transports synaptic vesicles to the nerve terminal, KIF1B has been implicated in transport of mitochondria. Both proteins are expressed in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. In contrast to the majority of dimeric kinesins, most KIF1A/Unc104 kinesins are monomeric motors. A lysine-rich loop in KIF1A binds to the negatively charged C-terminus of tubulin and compensates for the lack of a second motor domain, allowing KIF1A to move processively.


Pssm-ID: 276816 [Multi-domain]  Cd Length: 361  Bit Score: 61.60  E-value: 4.88e-13
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 343478159   5 KVKVAVRVRPMNRRELELNTKCVVEMEGNQTVLHPPPSNTKQGERLVTVAH 55
Cdd:cd01365    2 NVKVAVRVRPFNSREKERNSKCIVQMSGKETTLKNPKQADKNNKATREVPK 52
 
Name Accession Description Interval E-value
KISc_KIF1A_KIF1B cd01365
Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A ...
5-55 4.88e-13

Kinesin motor domain, KIF1_like proteins; Kinesin motor domain, KIF1_like proteins. KIF1A (Unc104) transports synaptic vesicles to the nerve terminal, KIF1B has been implicated in transport of mitochondria. Both proteins are expressed in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. In contrast to the majority of dimeric kinesins, most KIF1A/Unc104 kinesins are monomeric motors. A lysine-rich loop in KIF1A binds to the negatively charged C-terminus of tubulin and compensates for the lack of a second motor domain, allowing KIF1A to move processively.


Pssm-ID: 276816 [Multi-domain]  Cd Length: 361  Bit Score: 61.60  E-value: 4.88e-13
                         10        20        30        40        50
                 ....*....|....*....|....*....|....*....|....*....|.
gi 343478159   5 KVKVAVRVRPMNRRELELNTKCVVEMEGNQTVLHPPPSNTKQGERLVTVAH 55
Cdd:cd01365    2 NVKVAVRVRPFNSREKERNSKCIVQMSGKETTLKNPKQADKNNKATREVPK 52
KISc cd00106
Kinesin motor domain; Kinesin motor domain. This catalytic (head) domain has ATPase activity ...
5-49 3.55e-05

Kinesin motor domain; Kinesin motor domain. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type), in some its is found in the middle (M-type), or C-terminal (C-type). N-type and M-type kinesins are (+) end-directed motors, while C-type kinesins are (-) end-directed motors, i.e. they transport cargo towards the (-) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward.


Pssm-ID: 276812 [Multi-domain]  Cd Length: 326  Bit Score: 39.16  E-value: 3.55e-05
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*
gi 343478159   5 KVKVAVRVRPMNRRELELNTKCVVEMEGNQTVLHPPPSNTKQGER 49
Cdd:cd00106    1 NVRVAVRVRPLNGREARSAKSVISVDGGKSVVLDPPKNRVAPPKT 45
KISc_KIF3 cd01371
Kinesin motor domain, kinesins II or KIF3_like proteins; Kinesin motor domain, kinesins II or ...
6-52 2.31e-04

Kinesin motor domain, kinesins II or KIF3_like proteins; Kinesin motor domain, kinesins II or KIF3_like proteins. Subgroup of kinesins, which form heterotrimers composed of 2 kinesins and one non-motor accessory subunit. Kinesins II play important roles in ciliary transport, and have been implicated in neuronal transport, melanosome transport, the secretory pathway, and mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this group the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward.


Pssm-ID: 276822 [Multi-domain]  Cd Length: 334  Bit Score: 37.06  E-value: 2.31e-04
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|....*....
gi 343478159   6 VKVAVRVRPMNRRELELNTKCVVEME--GNQTVLHPPPSNTKQGERLVT 52
Cdd:cd01371    3 VKVVVRCRPLNGKEKAAGALQIVDVDekRGQVSVRNPKATANEPPKTFT 51
KISc_KIP3_like cd01370
Kinesin motor domain, KIP3-like subgroup; Kinesin motor domain, KIP3-like subgroup. The yeast ...
6-44 1.10e-03

Kinesin motor domain, KIP3-like subgroup; Kinesin motor domain, KIP3-like subgroup. The yeast kinesin KIP3 plays a role in positioning the mitotic spindle. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward.


Pssm-ID: 276821 [Multi-domain]  Cd Length: 345  Bit Score: 35.01  E-value: 1.10e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|
gi 343478159   6 VKVAVRVRPMNRRELELNTKCVVE-MEGNQTVLHPPPSNT 44
Cdd:cd01370    2 LTVAVRVRPFSEKEKNEGFRRIVKvMDNHMLVFDPKDEED 41
KISc_KHC_KIF5 cd01369
Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup; Kinesin motor domain, ...
3-37 4.38e-03

Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup; Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup. Members of this group have been associated with organelle transport. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward.


Pssm-ID: 276820 [Multi-domain]  Cd Length: 325  Bit Score: 33.46  E-value: 4.38e-03
                         10        20        30
                 ....*....|....*....|....*....|....*
gi 343478159   3 DTKVKVAVRVRPMNRRELELNTKCVVEMEGNQTVL 37
Cdd:cd01369    1 ECNIKVVCRFRPLNELEVLQGSKSIVKFDPEDTVV 35
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH