DNA polymerase type-B zeta subfamily catalytic domain. DNA polymerase (Pol) zeta is a member ...
752-1201
0e+00
DNA polymerase type-B zeta subfamily catalytic domain. DNA polymerase (Pol) zeta is a member of the eukaryotic B-family of DNA polymerases and distantly related to DNA Pol delta. Pol zeta plays a major role in translesion replication and the production of either spontaneous or induced mutations. Apart from its role in translesion replication, Pol zeta also appears to be involved in somatic hypermutability in B lymphocytes, an important element for the production of high affinity antibodies in response to an antigen.
:
Pssm-ID: 99917 Cd Length: 451 Bit Score: 679.32 E-value: 0e+00
DnaQ-like (or DEDD) 3'-5' exonuclease domain superfamily; The DnaQ-like exonuclease superfamily is a structurally conserved group of 3'-5' exonucleases, which catalyze the excision of nucleoside monophosphates at the DNA or RNA termini in the 3'-5' direction. It is also called the DEDD superfamily, after the four invariant acidic residues present in the catalytic site of its members. The superfamily consists of DNA- and RNA-processing enzymes such as the proofreading domains of DNA polymerases, other DNA exonucleases, RNase D, RNase T, Oligoribonuclease and RNA exonucleases (REX). The DnaQ-like exonuclease domain contains three conserved sequence motifs termed ExoI, ExoII and ExoIII, which are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. The conservation patterns of the three motifs may vary among different subfamilies. DnaQ-like exonucleases are classified as DEDDy or DEDDh exonucleases depending on the variation of motif III as YX(3)D or HX(4)D, respectively. The significance of the motif differences is still unclear. Almost all RNase families in this superfamily are present only in eukaryotes and bacteria, but not in archaea, suggesting a later origin, which in some cases are accompanied by horizontal gene transfer.
The actual alignment was detected with superfamily member cd05778:
Pssm-ID: 447876 [Multi-domain] Cd Length: 231 Bit Score: 165.10 E-value: 6.93e-46
DNA polymerase type-B zeta subfamily catalytic domain. DNA polymerase (Pol) zeta is a member ...
752-1201
0e+00
DNA polymerase type-B zeta subfamily catalytic domain. DNA polymerase (Pol) zeta is a member of the eukaryotic B-family of DNA polymerases and distantly related to DNA Pol delta. Pol zeta plays a major role in translesion replication and the production of either spontaneous or induced mutations. Apart from its role in translesion replication, Pol zeta also appears to be involved in somatic hypermutability in B lymphocytes, an important element for the production of high affinity antibodies in response to an antigen.
Pssm-ID: 99917 Cd Length: 451 Bit Score: 679.32 E-value: 0e+00
DNA polymerase family B; This region of DNA polymerase B appears to consist of more than one ...
743-1197
5.50e-93
DNA polymerase family B; This region of DNA polymerase B appears to consist of more than one structural domain, possibly including elongation, DNA-binding and dNTP binding activities.
Pssm-ID: 395085 Cd Length: 439 Bit Score: 306.85 E-value: 5.50e-93
DNA polymerase type-B family; DNA polymerase alpha, delta, epsilon and zeta chain (eukaryota), ...
591-993
6.24e-60
DNA polymerase type-B family; DNA polymerase alpha, delta, epsilon and zeta chain (eukaryota), DNA polymerases in archaea, DNA polymerase II in e. coli, mitochondrial DNA polymerases and and virus DNA polymerases
Pssm-ID: 214691 [Multi-domain] Cd Length: 474 Bit Score: 213.93 E-value: 6.24e-60
inactive DEDDy 3'-5' exonuclease domain of eukaryotic DNA polymerase zeta, a family-B DNA ...
517-725
6.93e-46
inactive DEDDy 3'-5' exonuclease domain of eukaryotic DNA polymerase zeta, a family-B DNA polymerase; The 3'-5' exonuclease domain of eukaryotic DNA polymerase zeta. DNA polymerase zeta is a family-B DNA polymerase which is distantly related to DNA polymerase delta. It plays a major role in translesion replication and the production of either spontaneous or induced mutations. In addition, DNA polymerase zeta also appears to be involved in somatic hypermutability in B lymphocytes, an important element for the production of high affinity antibodies in response to an antigen. The catalytic subunit contains both polymerase and 3'-5' exonuclease domains, but only exhibits polymerase activity. The DnaQ-like 3'-5' exonuclease domain contains three sequence motifs termed ExoI, ExoII and ExoIII, without the four conserved acidic residues that are crucial for metal binding and catalysis.
Pssm-ID: 99821 [Multi-domain] Cd Length: 231 Bit Score: 165.10 E-value: 6.93e-46
DNA polymerase (pol2); All proteins in this superfamily for which functions are known are DNA ...
654-1193
5.18e-41
DNA polymerase (pol2); All proteins in this superfamily for which functions are known are DNA polymerases.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair]
Pssm-ID: 273159 [Multi-domain] Cd Length: 1172 Bit Score: 165.23 E-value: 5.18e-41
DNA polymerase type-B zeta subfamily catalytic domain. DNA polymerase (Pol) zeta is a member ...
752-1201
0e+00
DNA polymerase type-B zeta subfamily catalytic domain. DNA polymerase (Pol) zeta is a member of the eukaryotic B-family of DNA polymerases and distantly related to DNA Pol delta. Pol zeta plays a major role in translesion replication and the production of either spontaneous or induced mutations. Apart from its role in translesion replication, Pol zeta also appears to be involved in somatic hypermutability in B lymphocytes, an important element for the production of high affinity antibodies in response to an antigen.
Pssm-ID: 99917 Cd Length: 451 Bit Score: 679.32 E-value: 0e+00
DNA polymerase family B; This region of DNA polymerase B appears to consist of more than one ...
743-1197
5.50e-93
DNA polymerase family B; This region of DNA polymerase B appears to consist of more than one structural domain, possibly including elongation, DNA-binding and dNTP binding activities.
Pssm-ID: 395085 Cd Length: 439 Bit Score: 306.85 E-value: 5.50e-93
DNA polymerase type-B delta subfamily catalytic domain. Three DNA-dependent DNA polymerases ...
792-1193
1.23e-76
DNA polymerase type-B delta subfamily catalytic domain. Three DNA-dependent DNA polymerases type B (alpha, delta, and epsilon) have been identified as essential for nuclear DNA replication in eukaryotes. Presently, no direct data is available regarding the strand specificity of DNA polymerase during DNA replication in vivo. However, mutation analysis supports the hypothesis that DNA polymerase delta is the enzyme responsible for both elongation and maturation of Okazaki fragments on the lagging strand.
Pssm-ID: 99916 Cd Length: 393 Bit Score: 259.51 E-value: 1.23e-76
DNA polymerase type-B family catalytic domain. DNA-directed DNA polymerases elongate DNA by ...
791-1195
2.51e-67
DNA polymerase type-B family catalytic domain. DNA-directed DNA polymerases elongate DNA by adding nucleotide triphosphate (dNTP) residues to the 5'-end of the growing chain of DNA. DNA-directed DNA polymerases are multifunctional with both synthetic (polymerase) and degradative modes (exonucleases) and play roles in the processes of DNA replication, repair, and recombination. DNA-dependent DNA polymerases can be classified in six main groups based upon their phylogenetic relationships with E. coli polymerase I (class A), E. coli polymerase II (class B), E. coli polymerase III (class C), euryarchaeota polymerase II (class D), human polymerase beta (class x), E. coli UmuC/DinB, and eukaryotic RAP 30/Xeroderma pigmentosum variant (class Y). Family B DNA polymerases include E. coli DNA polymerase II, some eubacterial phage DNA polymerases, nuclear replicative DNA polymerases (alpha, delta, epsilon, and zeta), and eukaryotic viral and plasmid-borne enzymes. DNA polymerase is made up of distinct domains and sub-domains. The polymerase domain of DNA polymerase type B (Pol domain) is responsible for the template-directed polymerization of dNTPs onto the growing primer strand of duplex DNA that is usually magnesium dependent. In general, the architecture of the Pol domain has been likened to a right hand with fingers, thumb, and palm sub-domains with a deep groove to accommodate the nucleic acid substrate. There are a few conserved motifs in the Pol domain of family B DNA polymerases. The conserved aspartic acid residues in the DTDS motifs of the palm sub-domain is crucial for binding to divalent metal ion and is suggested to be important for polymerase catalysis.
Pssm-ID: 99912 [Multi-domain] Cd Length: 323 Bit Score: 230.33 E-value: 2.51e-67
DNA polymerase type-B family; DNA polymerase alpha, delta, epsilon and zeta chain (eukaryota), ...
591-993
6.24e-60
DNA polymerase type-B family; DNA polymerase alpha, delta, epsilon and zeta chain (eukaryota), DNA polymerases in archaea, DNA polymerase II in e. coli, mitochondrial DNA polymerases and and virus DNA polymerases
Pssm-ID: 214691 [Multi-domain] Cd Length: 474 Bit Score: 213.93 E-value: 6.24e-60
DNA polymerase type-B alpha subfamily catalytic domain. Three DNA-dependent DNA polymerases ...
791-1199
1.34e-53
DNA polymerase type-B alpha subfamily catalytic domain. Three DNA-dependent DNA polymerases type B (alpha, delta, and epsilon) have been identified as essential for nuclear DNA replication in eukaryotes. DNA polymerase (Pol) alpha is almost exclusively required for the initiation of DNA replication and the priming of Okazaki fragments during elongation. In most organisms no specific repair role, other than check point control, has been assigned to this enzyme. Pol alpha contains both polymerase and exonuclease domains, but lacks exonuclease activity suggesting that the exonuclease domain may be for structural purposes only.
Pssm-ID: 99915 Cd Length: 400 Bit Score: 193.18 E-value: 1.34e-53
inactive DEDDy 3'-5' exonuclease domain of eukaryotic DNA polymerase zeta, a family-B DNA ...
517-725
6.93e-46
inactive DEDDy 3'-5' exonuclease domain of eukaryotic DNA polymerase zeta, a family-B DNA polymerase; The 3'-5' exonuclease domain of eukaryotic DNA polymerase zeta. DNA polymerase zeta is a family-B DNA polymerase which is distantly related to DNA polymerase delta. It plays a major role in translesion replication and the production of either spontaneous or induced mutations. In addition, DNA polymerase zeta also appears to be involved in somatic hypermutability in B lymphocytes, an important element for the production of high affinity antibodies in response to an antigen. The catalytic subunit contains both polymerase and 3'-5' exonuclease domains, but only exhibits polymerase activity. The DnaQ-like 3'-5' exonuclease domain contains three sequence motifs termed ExoI, ExoII and ExoIII, without the four conserved acidic residues that are crucial for metal binding and catalysis.
Pssm-ID: 99821 [Multi-domain] Cd Length: 231 Bit Score: 165.10 E-value: 6.93e-46
DNA polymerase (pol2); All proteins in this superfamily for which functions are known are DNA ...
654-1193
5.18e-41
DNA polymerase (pol2); All proteins in this superfamily for which functions are known are DNA polymerases.This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University). [DNA metabolism, DNA replication, recombination, and repair]
Pssm-ID: 273159 [Multi-domain] Cd Length: 1172 Bit Score: 165.23 E-value: 5.18e-41
DNA polymerase type-B B3 subfamily catalytic domain. Archaeal proteins that are involved in ...
791-1197
5.25e-40
DNA polymerase type-B B3 subfamily catalytic domain. Archaeal proteins that are involved in DNA replication are similar to those from eukaryotes. Some members of the archaea also possess multiple family B DNA polymerases (B1, B2 and B3). So far there is no specific function(s) has been assigned for different members of the archaea type B DNA polymerases. Phylogenetic analyses of eubacterial, archaeal, and eukaryotic family B DNA polymerases are support independent gene duplications during the evolution of archaeal and eukaryotic family B DNA polymerases. Structural comparison of the thermostable DNA polymerase type B to its mesostable homolog suggests several adaptations to high temperature such as shorter loops, disulfide bridges, and increasing electrostatic interaction at subdomain interfaces.
Pssm-ID: 99919 Cd Length: 371 Bit Score: 152.86 E-value: 5.25e-40
DNA polymerase type-B B2 subfamily catalytic domain. Archaeal proteins that are involved in ...
791-1183
2.68e-22
DNA polymerase type-B B2 subfamily catalytic domain. Archaeal proteins that are involved in DNA replication are similar to those from eukaryotes. Some archaeal members also possess multiple family B DNA polymerases (B1, B2 and B3). So far there is no specific function(s) has been assigned for different members of the archaea type B DNA polymerases. Phylogenetic analyses of eubacterial, archaeal, and eukaryotic family B DNA polymerases are support independent gene duplications during the evolution of archaeal and eukaryotic family B DNA polymerases.
Pssm-ID: 99914 Cd Length: 352 Bit Score: 100.11 E-value: 2.68e-22
DNA polymerase type-II subfamily catalytic domain. Bacteria contain five DNA polymerases (I, ...
791-1087
3.57e-20
DNA polymerase type-II subfamily catalytic domain. Bacteria contain five DNA polymerases (I, II, III, IV and V). DNA polymerase II (Pol II) is a prototype for the B-family of polymerases. The role of Pol II in a variety of cellular activities, such as repair of DNA damaged by UV irradiation or oxidation has been proven by genetic studies. DNA polymerase III is the main enzyme responsible for replication of the bacterial chromosome; however, In vivo studies have also shown that Pol II is able to participate in chromosomal DNA replication with larger role in lagging-strand replication.
Pssm-ID: 99920 Cd Length: 371 Bit Score: 94.26 E-value: 3.57e-20
DNA polymerase type-B B1 subfamily catalytic domain. Archaeal proteins that are involved in ...
791-1078
4.03e-20
DNA polymerase type-B B1 subfamily catalytic domain. Archaeal proteins that are involved in DNA replication are similar to those from eukaryotes. Some archaeal members also possess multiple family B DNA polymerases (B1, B2 and B3). So far there is no specific function(s) has been assigned for different members of the archaea type B DNA polymerases. Phylogenetic analyses of eubacterial, archaeal, and eukaryotic family B DNA polymerases are support independent gene duplications during the evolution of archaeal and eukaryotic family B DNA polymerases.
Pssm-ID: 99913 Cd Length: 372 Bit Score: 93.95 E-value: 4.03e-20
DNA polymerase type-II B subfamily catalytic domain. Bacteria contain five DNA polymerases (I, ...
882-1182
1.38e-12
DNA polymerase type-II B subfamily catalytic domain. Bacteria contain five DNA polymerases (I, II, III, IV and V). DNA polymerase II (Pol II) is a prototype for the B-family of polymerases. The role of Pol II in a variety of cellular activities, such as repair of DNA damaged by UV irradiation or oxidation has been proved by genetic studies. DNA polymerase III is the main enzyme responsible for replication of the bacterial chromosome; however, In vivo studies have also shown that Pol II is able to participate in chromosomal DNA replication with larger role in lagging-strand replication.
Pssm-ID: 99921 Cd Length: 347 Bit Score: 70.59 E-value: 1.38e-12
DEDDy 3'-5' exonuclease domain of family-B DNA polymerases; The 3'-5' exonuclease domain of ...
593-702
1.11e-04
DEDDy 3'-5' exonuclease domain of family-B DNA polymerases; The 3'-5' exonuclease domain of family-B DNA polymerases. This domain has a fundamental role in reducing polymerase errors and is involved in proofreading activity. Family-B DNA polymerases contain an N-terminal DEDDy DnaQ-like exonuclease domain in the same polypeptide chain as the polymerase domain, similar to family-A DNA polymerases. This domain contains three sequence motifs termed ExoI, ExoII and ExoIII, with a specific YX(3)D pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. The exonuclease domain of family B polymerase also contains a beta hairpin structure that plays an important role in active site switching in the event of nucleotide misincorporation. Members include Escherichia coli DNA polymerase II, some eubacterial phage DNA polymerases, nuclear replicative DNA polymerases (alpha, delta, epsilon and zeta), and eukaryotic viral and plasmid-borne enzymes. Nuclear DNA polymerases alpha and zeta lack the four conserved acidic metal-binding residues. Family-B DNA polymerases are predominantly involved in DNA replication and DNA repair.
Pssm-ID: 176646 [Multi-domain] Cd Length: 199 Bit Score: 44.65 E-value: 1.11e-04
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options