Ste50p [Saccharomyces cerevisiae S288C]
List of domain hits
Name | Accession | Description | Interval | E-value | |||
SAM_Ste50p | pfam09235 | Ste50p, sterile alpha motif; The fungal Ste50p SAM domain consists of five helices, which form ... |
30-104 | 8.22e-40 | |||
Ste50p, sterile alpha motif; The fungal Ste50p SAM domain consists of five helices, which form a compact, globular fold. It is required for mediation of homodimerization and heterodimerization (and in some cases oligomerization) of the protein. : Pssm-ID: 401248 Cd Length: 75 Bit Score: 134.99 E-value: 8.22e-40
|
|||||||
RA_STE50 | cd01786 | Ras-associating (RA) domain found in the fungal adaptor protein STE50; The fungal adaptor ... |
226-325 | 2.79e-38 | |||
Ras-associating (RA) domain found in the fungal adaptor protein STE50; The fungal adaptor protein STE50 is an essential component of three MAPK-mediated signaling pathways that control the mating response, invasive/filamentous growth and osmotolerance (HOG pathway), respectively. STE50 functions in cell signaling between the activated G protein and STE11. The domain architecture of STE50 includes an amino-terminal SAM (sterile alpha motif) domain in addition to the carboxy-terminal ubiquitin-like RA (RAS-associated) domain. RA domain of STE50 interacts with the small GTPase Cdc42p, a member of Rho type of the Ras superfamily. This interaction activates Ste11p/Ste7p/Kss1pMAP kinase cascade that controls filamentous growth. RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. : Pssm-ID: 340484 Cd Length: 101 Bit Score: 132.07 E-value: 2.79e-38
|
|||||||
Name | Accession | Description | Interval | E-value | |||
SAM_Ste50p | pfam09235 | Ste50p, sterile alpha motif; The fungal Ste50p SAM domain consists of five helices, which form ... |
30-104 | 8.22e-40 | |||
Ste50p, sterile alpha motif; The fungal Ste50p SAM domain consists of five helices, which form a compact, globular fold. It is required for mediation of homodimerization and heterodimerization (and in some cases oligomerization) of the protein. Pssm-ID: 401248 Cd Length: 75 Bit Score: 134.99 E-value: 8.22e-40
|
|||||||
SAM_Ste50_fungal | cd09536 | SAM domain of Ste50 fungal subfamily; SAM (sterile alpha motif) domain of Ste50 fungal ... |
30-103 | 1.41e-39 | |||
SAM domain of Ste50 fungal subfamily; SAM (sterile alpha motif) domain of Ste50 fungal subfamily is a protein-protein interaction domain. Proteins of this subfamily have SAM domain at the N-terminus and Ras-associated UBQ superfamily domain at the C-terminus. They participate in regulation of mating pheromone response, invasive growth and high osmolarity growth response, and contribute to cell wall integrity in vegetative cells. Ste50 of S.cerevisiae acts as an adaptor protein between G protein and MAP triple kinase Ste11. Ste50 proteins are able to form homooligomers, binding each other via their SAM domains, as well as heterodimers and heterogeneous complexes with SAM domain or SAM homodimers of MAPKKK Ste11 protein kinase. Pssm-ID: 188935 Cd Length: 74 Bit Score: 134.48 E-value: 1.41e-39
|
|||||||
RA_STE50 | cd01786 | Ras-associating (RA) domain found in the fungal adaptor protein STE50; The fungal adaptor ... |
226-325 | 2.79e-38 | |||
Ras-associating (RA) domain found in the fungal adaptor protein STE50; The fungal adaptor protein STE50 is an essential component of three MAPK-mediated signaling pathways that control the mating response, invasive/filamentous growth and osmotolerance (HOG pathway), respectively. STE50 functions in cell signaling between the activated G protein and STE11. The domain architecture of STE50 includes an amino-terminal SAM (sterile alpha motif) domain in addition to the carboxy-terminal ubiquitin-like RA (RAS-associated) domain. RA domain of STE50 interacts with the small GTPase Cdc42p, a member of Rho type of the Ras superfamily. This interaction activates Ste11p/Ste7p/Kss1pMAP kinase cascade that controls filamentous growth. RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. Pssm-ID: 340484 Cd Length: 101 Bit Score: 132.07 E-value: 2.79e-38
|
|||||||
RA | pfam00788 | Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); ... |
244-327 | 3.45e-17 | |||
Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); putative RasGTP effectors in other cases. Recent evidence (not yet in MEDLINE) shows that some RA domains do NOT bind RasGTP. Predicted structure similar to that determined, and that of the RasGTP-binding domain of Raf kinase. Pssm-ID: 425871 Cd Length: 93 Bit Score: 75.83 E-value: 3.45e-17
|
|||||||
RA | smart00314 | Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); ... |
249-326 | 2.07e-15 | |||
Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); putative RasGTP effectors in other cases. Kalhammer et al. have shown that not all RA domains bind RasGTP. Predicted structure similar to that determined, and that of the RasGTP-binding domain of Raf kinase. Predicted RA domains in PLC210 and nore1 found to bind RasGTP. Included outliers (Grb7, Grb14, adenylyl cyclases etc.) Pssm-ID: 214612 Cd Length: 90 Bit Score: 70.79 E-value: 2.07e-15
|
|||||||
Name | Accession | Description | Interval | E-value | |||
SAM_Ste50p | pfam09235 | Ste50p, sterile alpha motif; The fungal Ste50p SAM domain consists of five helices, which form ... |
30-104 | 8.22e-40 | |||
Ste50p, sterile alpha motif; The fungal Ste50p SAM domain consists of five helices, which form a compact, globular fold. It is required for mediation of homodimerization and heterodimerization (and in some cases oligomerization) of the protein. Pssm-ID: 401248 Cd Length: 75 Bit Score: 134.99 E-value: 8.22e-40
|
|||||||
SAM_Ste50_fungal | cd09536 | SAM domain of Ste50 fungal subfamily; SAM (sterile alpha motif) domain of Ste50 fungal ... |
30-103 | 1.41e-39 | |||
SAM domain of Ste50 fungal subfamily; SAM (sterile alpha motif) domain of Ste50 fungal subfamily is a protein-protein interaction domain. Proteins of this subfamily have SAM domain at the N-terminus and Ras-associated UBQ superfamily domain at the C-terminus. They participate in regulation of mating pheromone response, invasive growth and high osmolarity growth response, and contribute to cell wall integrity in vegetative cells. Ste50 of S.cerevisiae acts as an adaptor protein between G protein and MAP triple kinase Ste11. Ste50 proteins are able to form homooligomers, binding each other via their SAM domains, as well as heterodimers and heterogeneous complexes with SAM domain or SAM homodimers of MAPKKK Ste11 protein kinase. Pssm-ID: 188935 Cd Length: 74 Bit Score: 134.48 E-value: 1.41e-39
|
|||||||
RA_STE50 | cd01786 | Ras-associating (RA) domain found in the fungal adaptor protein STE50; The fungal adaptor ... |
226-325 | 2.79e-38 | |||
Ras-associating (RA) domain found in the fungal adaptor protein STE50; The fungal adaptor protein STE50 is an essential component of three MAPK-mediated signaling pathways that control the mating response, invasive/filamentous growth and osmotolerance (HOG pathway), respectively. STE50 functions in cell signaling between the activated G protein and STE11. The domain architecture of STE50 includes an amino-terminal SAM (sterile alpha motif) domain in addition to the carboxy-terminal ubiquitin-like RA (RAS-associated) domain. RA domain of STE50 interacts with the small GTPase Cdc42p, a member of Rho type of the Ras superfamily. This interaction activates Ste11p/Ste7p/Kss1pMAP kinase cascade that controls filamentous growth. RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. Pssm-ID: 340484 Cd Length: 101 Bit Score: 132.07 E-value: 2.79e-38
|
|||||||
RA | pfam00788 | Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); ... |
244-327 | 3.45e-17 | |||
Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); putative RasGTP effectors in other cases. Recent evidence (not yet in MEDLINE) shows that some RA domains do NOT bind RasGTP. Predicted structure similar to that determined, and that of the RasGTP-binding domain of Raf kinase. Pssm-ID: 425871 Cd Length: 93 Bit Score: 75.83 E-value: 3.45e-17
|
|||||||
RA | smart00314 | Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); ... |
249-326 | 2.07e-15 | |||
Ras association (RalGDS/AF-6) domain; RasGTP effectors (in cases of AF6, canoe and RalGDS); putative RasGTP effectors in other cases. Kalhammer et al. have shown that not all RA domains bind RasGTP. Predicted structure similar to that determined, and that of the RasGTP-binding domain of Raf kinase. Predicted RA domains in PLC210 and nore1 found to bind RasGTP. Included outliers (Grb7, Grb14, adenylyl cyclases etc.) Pssm-ID: 214612 Cd Length: 90 Bit Score: 70.79 E-value: 2.07e-15
|
|||||||
RA | cd17043 | Ras-associating (RA) domain, structurally similar to a beta-grasp ubiquitin-like fold; RA ... |
249-324 | 6.79e-15 | |||
Ras-associating (RA) domain, structurally similar to a beta-grasp ubiquitin-like fold; RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in various functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. The RA domain has the beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub); Ub is a protein modifier in eukaryotes that is involved in various cellular processes, including transcriptional regulation, cell cycle control, and DNA repair. RA-containing proteins include RalGDS, AF6, RIN, RASSF1, SNX27, CYR1, STE50, and phospholipase C epsilon. Pssm-ID: 340563 Cd Length: 87 Bit Score: 69.27 E-value: 6.79e-15
|
|||||||
RA_CYR1_like | cd17214 | Ras-associating (RA) domain found in Saccharomyces cerevisiae adenylate cyclase and similar ... |
261-314 | 3.82e-04 | |||
Ras-associating (RA) domain found in Saccharomyces cerevisiae adenylate cyclase and similar proteins; CYR1, also termed ATP pyrophosphate-lyase, or adenylyl cyclase, is a fungal adenylate cyclase that regulates developmental processes such as hyphal growth, biofilm formation, and phenotypic switching. CYR1 plays essential roles in regulation of cellular metabolism by catalyzing the synthesis of a second messenger, cAMP. It acts as a scaffold protein keeping Ras2 available for its regulatory factors, the Ira proteins. CYR1 has at least four domains, including an N-terminal adenylate cyclase G-alpha binding domain, a Ras-associating (RA) domain, a middle leucine-rich repeat region, and a catalytic domain. The RA domain has the beta-grasp ubiquitin-like fold with low sequence similarity to ubiquitin; ubiquitin is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair. The RA domain of CYR1 post-translationally modifies a small GTPase called Ras, which is involved in cellular signal transduction. CYR1 activity is stimulated directly by regulatory proteins (Ras1 and Gpa2), peptidoglycan fragments and carbon dioxide. Pssm-ID: 340734 Cd Length: 99 Bit Score: 39.12 E-value: 3.82e-04
|
|||||||
RA2_DAGK-theta | cd01783 | Ras-associating (RA) domain 2 found in diacylgylcerol kinase theta (DAGK-theta) and similar ... |
252-323 | 9.45e-03 | |||
Ras-associating (RA) domain 2 found in diacylgylcerol kinase theta (DAGK-theta) and similar proteins; DAGK phosphorylates the second messenger diacylglycerol to phosphatidic acid as part of a protein kinase C pathway. DAGK-theta is characterized as a type V DAGK that has three cysteine-rich domains (all other isoforms have two), a proline/glycine-rich domain at its N-terminal, and a proposed Ras-associating (RA) domain. RA domain-containing proteins function by interacting with Ras proteins directly or indirectly and are involved in several different functions ranging from tumor suppression to being oncoproteins. Ras proteins are small GTPases that are involved in cellular signal transduction. The RA domain has a beta-grasp ubiquitin-like (Ubl) fold with low sequence similarity to ubiquitin (Ub). Ub is a protein modifier in eukaryotes that is involved in various cellular processes including transcriptional regulation, cell cycle control, and DNA repair in eukaryotes. There are ten mammalian isoforms of DAGK have been identified to date, these are organized into five categories based on the domain architecture. DAGK-theta also contains a pleckstrin homology (PH) domain. The subcellular localization and the activity of DAGK-theta are regulated in a complex (stimulation- and cell type-dependent) manner. This family corresponds to the second RA domain of DAGK-theta. Pssm-ID: 340481 Cd Length: 95 Bit Score: 35.28 E-value: 9.45e-03
|
|||||||
Blast search parameters | ||||
|