saccheropin dehydrogenase 1, isoform A [Drosophila melanogaster]
saccharopine dehydrogenase family protein( domain architecture ID 11461686)
saccharopine dehydrogenase family protein contains a Rossmann fold NADP-binding domain, such as vertebrate saccharopine dehydrogenase-like oxidoreductase and mycobacterial trans-acting enoyl reductase
List of domain hits
Name | Accession | Description | Interval | E-value | |||||||
COG3268 | COG3268 | Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]; |
1-428 | 1.47e-70 | |||||||
Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]; : Pssm-ID: 442499 [Multi-domain] Cd Length: 368 Bit Score: 227.03 E-value: 1.47e-70
|
|||||||||||
Name | Accession | Description | Interval | E-value | |||||||
COG3268 | COG3268 | Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]; |
1-428 | 1.47e-70 | |||||||
Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]; Pssm-ID: 442499 [Multi-domain] Cd Length: 368 Bit Score: 227.03 E-value: 1.47e-70
|
|||||||||||
Sacchrp_dh_NADP | pfam03435 | Saccharopine dehydrogenase NADP binding domain; This family contains the NADP binding domain ... |
8-139 | 1.03e-16 | |||||||
Saccharopine dehydrogenase NADP binding domain; This family contains the NADP binding domain of saccharopine dehydrogenase. In some organizms this enzyme is found as a bifunctional polypeptide with lysine ketoglutarate reductase. The saccharopine dehydrogenase can also function as a saccharopine reductase. Pssm-ID: 397480 [Multi-domain] Cd Length: 120 Bit Score: 75.70 E-value: 1.03e-16
|
|||||||||||
NDUFA9_like_SDR_a | cd05271 | NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, subunit 9, 39 kDa, (NDUFA9) -like, ... |
8-107 | 9.51e-04 | |||||||
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, subunit 9, 39 kDa, (NDUFA9) -like, atypical (a) SDRs; This subgroup of extended SDR-like proteins are atypical SDRs. They have a glycine-rich NAD(P)-binding motif similar to the typical SDRs, GXXGXXG, and have the YXXXK active site motif (though not the other residues of the SDR tetrad). Members identified include NDUFA9 (mitochondrial) and putative nucleoside-diphosphate-sugar epimerase. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187579 [Multi-domain] Cd Length: 273 Bit Score: 40.69 E-value: 9.51e-04
|
|||||||||||
Name | Accession | Description | Interval | E-value | |||||||
COG3268 | COG3268 | Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]; |
1-428 | 1.47e-70 | |||||||
Uncharacterized conserved protein, related to short-chain dehydrogenases [Function unknown]; Pssm-ID: 442499 [Multi-domain] Cd Length: 368 Bit Score: 227.03 E-value: 1.47e-70
|
|||||||||||
Sacchrp_dh_NADP | pfam03435 | Saccharopine dehydrogenase NADP binding domain; This family contains the NADP binding domain ... |
8-139 | 1.03e-16 | |||||||
Saccharopine dehydrogenase NADP binding domain; This family contains the NADP binding domain of saccharopine dehydrogenase. In some organizms this enzyme is found as a bifunctional polypeptide with lysine ketoglutarate reductase. The saccharopine dehydrogenase can also function as a saccharopine reductase. Pssm-ID: 397480 [Multi-domain] Cd Length: 120 Bit Score: 75.70 E-value: 1.03e-16
|
|||||||||||
Lys9 | COG1748 | Saccharopine dehydrogenase, NADP-dependent [Amino acid transport and metabolism]; Saccharopine ... |
36-145 | 5.18e-16 | |||||||
Saccharopine dehydrogenase, NADP-dependent [Amino acid transport and metabolism]; Saccharopine dehydrogenase, NADP-dependent is part of the Pathway/BioSystem: Lysine biosynthesis Pssm-ID: 441354 [Multi-domain] Cd Length: 352 Bit Score: 78.73 E-value: 5.18e-16
|
|||||||||||
YwnB | COG2910 | Putative NADH-flavin reductase [General function prediction only]; |
8-91 | 2.05e-06 | |||||||
Putative NADH-flavin reductase [General function prediction only]; Pssm-ID: 442154 [Multi-domain] Cd Length: 205 Bit Score: 48.31 E-value: 2.05e-06
|
|||||||||||
YbjT | COG0702 | Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General ... |
8-115 | 1.98e-05 | |||||||
Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General function prediction only]; Pssm-ID: 440466 [Multi-domain] Cd Length: 215 Bit Score: 45.61 E-value: 1.98e-05
|
|||||||||||
WcaG | COG0451 | Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; |
8-111 | 5.00e-04 | |||||||
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440220 [Multi-domain] Cd Length: 295 Bit Score: 41.89 E-value: 5.00e-04
|
|||||||||||
NDUFA9_like_SDR_a | cd05271 | NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, subunit 9, 39 kDa, (NDUFA9) -like, ... |
8-107 | 9.51e-04 | |||||||
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, subunit 9, 39 kDa, (NDUFA9) -like, atypical (a) SDRs; This subgroup of extended SDR-like proteins are atypical SDRs. They have a glycine-rich NAD(P)-binding motif similar to the typical SDRs, GXXGXXG, and have the YXXXK active site motif (though not the other residues of the SDR tetrad). Members identified include NDUFA9 (mitochondrial) and putative nucleoside-diphosphate-sugar epimerase. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187579 [Multi-domain] Cd Length: 273 Bit Score: 40.69 E-value: 9.51e-04
|
|||||||||||
YqjQ | COG0300 | Short-chain dehydrogenase [General function prediction only]; |
1-94 | 2.23e-03 | |||||||
Short-chain dehydrogenase [General function prediction only]; Pssm-ID: 440069 [Multi-domain] Cd Length: 252 Bit Score: 39.47 E-value: 2.23e-03
|
|||||||||||
SDR_a5 | cd05243 | atypical (a) SDRs, subgroup 5; This subgroup contains atypical SDRs, some of which are ... |
8-167 | 3.29e-03 | |||||||
atypical (a) SDRs, subgroup 5; This subgroup contains atypical SDRs, some of which are identified as putative NAD(P)-dependent epimerases, one as a putative NAD-dependent epimerase/dehydratase. Atypical SDRs are distinct from classical SDRs. Members of this subgroup have a glycine-rich NAD(P)-binding motif that is very similar to the extended SDRs, GXXGXXG, and binds NADP. Generally, this subgroup has poor conservation of the active site tetrad; however, individual sequences do contain matches to the YXXXK active site motif, the upstream Ser, and there is a highly conserved Asp in place of the usual active site Asn throughout the subgroup. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187554 [Multi-domain] Cd Length: 203 Bit Score: 38.76 E-value: 3.29e-03
|
|||||||||||
YdfG | COG4221 | NADP-dependent 3-hydroxy acid dehydrogenase YdfG [Energy production and conversion]; ... |
8-90 | 3.94e-03 | |||||||
NADP-dependent 3-hydroxy acid dehydrogenase YdfG [Energy production and conversion]; NADP-dependent 3-hydroxy acid dehydrogenase YdfG is part of the Pathway/BioSystem: Pyrimidine degradation Pssm-ID: 443365 [Multi-domain] Cd Length: 240 Bit Score: 38.62 E-value: 3.94e-03
|
|||||||||||
mannonate_red_SDR_c | cd08935 | putative D-mannonate oxidoreductase, classical (c) SDR; D-mannonate oxidoreductase catalyzes ... |
8-90 | 6.49e-03 | |||||||
putative D-mannonate oxidoreductase, classical (c) SDR; D-mannonate oxidoreductase catalyzes the NAD-dependent interconversion of D-mannonate and D-fructuronate. This subgroup includes Bacillus subtitils UxuB/YjmF, a putative D-mannonate oxidoreductase; the B. subtilis UxuB gene is part of a putative ten-gene operon (the Yjm operon) involved in hexuronate catabolism. Escherichia coli UxuB does not belong to this subgroup. This subgroup has a canonical active site tetrad and a typical Gly-rich NAD-binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold (alpha/beta folding pattern with a central beta-sheet), an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Classical SDRs are typically about 250 residues long, while extended SDRs are approximately 350 residues. Sequence identity between different SDR enzymes are typically in the 15-30% range, but the enzymes share the Rossmann fold NAD-binding motif and characteristic NAD-binding and catalytic sequence patterns. These enzymes catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) numbering). In addition to the Tyr and Lys, there is often an upstream Ser (Ser-138, 15-PGDH numbering) and/or an Asn (Asn-107, 15-PGDH numbering) contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Extended SDRs have additional elements in the C-terminal region, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Some atypical SDRs have lost catalytic activity and/or have an unusual NAD(P)-binding motif and missing or unusual active site residues. Reactions catalyzed within the SDR family include isomerization, decarboxylation, epimerization, C=N bond reduction, dehydratase activity, dehalogenation, Enoyl-CoA reduction, and carbonyl-alcohol oxidoreduction. Pssm-ID: 187640 [Multi-domain] Cd Length: 271 Bit Score: 38.21 E-value: 6.49e-03
|
|||||||||||
Blast search parameters | ||||
|