NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|21357169|ref|NP_649574|]
View 

Rab23 [Drosophila melanogaster]

Protein Classification

Ras-related protein Rab23( domain architecture ID 10134872)

Ras-related protein Rab23 is a member of the Rab family of small GTPases that regulates membrane trafficking in eukaryotes; regulates a specific developmental pathway called the hedgehog signaling pathway that is critical in cell growth, cell specialization, and the normal shaping (patterning) of many parts of the body during embryonic development

Gene Symbol:  RAB23
Gene Ontology:  GO:0003924
PubMed:  29727300

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
Rab23_like cd04106
Rab GTPase family 23 (Rab23)-like; Rab23-like subfamily. Rab23 is a member of the Rab family ...
50-197 1.02e-90

Rab GTPase family 23 (Rab23)-like; Rab23-like subfamily. Rab23 is a member of the Rab family of small GTPases. In mouse, Rab23 has been shown to function as a negative regulator in the sonic hedgehog (Shh) signaling pathway. Rab23 mediates the activity of Gli2 and Gli3, transcription factors that regulate Shh signaling in the spinal cord, primarily by preventing Gli2 activation in the absence of Shh ligand. Rab23 also regulates a step in the cytoplasmic signal transduction pathway that mediates the effect of Smoothened (one of two integral membrane proteins that are essential components of the Shh signaling pathway in vertebrates). In humans, Rab23 is expressed in the retina. Mice contain an isoform that shares 93% sequence identity with the human Rab23 and an alternative splicing isoform that is specific to the brain. This isoform causes the murine open brain phenotype, indicating it may have a role in the development of the central nervous system. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


:

Pssm-ID: 133306 [Multi-domain]  Cd Length: 162  Bit Score: 265.46  E-value: 1.02e-90
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEID--GEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDA 127
Cdd:cd04106  13 KSSMIQRFVKGIFTKDYKKTIGVDFLEKQIFLRqsDEDVRLMLWDTAGQEEFDAITKAYYRGAQACILVFSTTDRESFEA 92
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 128 IKDWKRKVENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKC 197
Cdd:cd04106  93 IESWKEKVEAECGDIPMVLVQTKIDLLDQAVITNEEAEALAKRLQLPLFRTSVKDDFNVTELFEYLAEKC 162
 
Name Accession Description Interval E-value
Rab23_like cd04106
Rab GTPase family 23 (Rab23)-like; Rab23-like subfamily. Rab23 is a member of the Rab family ...
50-197 1.02e-90

Rab GTPase family 23 (Rab23)-like; Rab23-like subfamily. Rab23 is a member of the Rab family of small GTPases. In mouse, Rab23 has been shown to function as a negative regulator in the sonic hedgehog (Shh) signaling pathway. Rab23 mediates the activity of Gli2 and Gli3, transcription factors that regulate Shh signaling in the spinal cord, primarily by preventing Gli2 activation in the absence of Shh ligand. Rab23 also regulates a step in the cytoplasmic signal transduction pathway that mediates the effect of Smoothened (one of two integral membrane proteins that are essential components of the Shh signaling pathway in vertebrates). In humans, Rab23 is expressed in the retina. Mice contain an isoform that shares 93% sequence identity with the human Rab23 and an alternative splicing isoform that is specific to the brain. This isoform causes the murine open brain phenotype, indicating it may have a role in the development of the central nervous system. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 133306 [Multi-domain]  Cd Length: 162  Bit Score: 265.46  E-value: 1.02e-90
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEID--GEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDA 127
Cdd:cd04106  13 KSSMIQRFVKGIFTKDYKKTIGVDFLEKQIFLRqsDEDVRLMLWDTAGQEEFDAITKAYYRGAQACILVFSTTDRESFEA 92
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 128 IKDWKRKVENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKC 197
Cdd:cd04106  93 IESWKEKVEAECGDIPMVLVQTKIDLLDQAVITNEEAEALAKRLQLPLFRTSVKDDFNVTELFEYLAEKC 162
Ras pfam00071
Ras family; Includes sub-families Ras, Rab, Rac, Ral, Ran, Rap Ypt1 and more. Shares P-loop ...
50-199 5.44e-55

Ras family; Includes sub-families Ras, Rab, Rac, Ral, Ran, Rap Ypt1 and more. Shares P-loop motif with GTP_EFTU, arf and myosin_head. See pfam00009 pfam00025, pfam00063. As regards Rab GTPases, these are important regulators of vesicle formation, motility and fusion. They share a fold in common with all Ras GTPases: this is a six-stranded beta-sheet surrounded by five alpha-helices.


Pssm-ID: 425451 [Multi-domain]  Cd Length: 162  Bit Score: 174.63  E-value: 5.44e-55
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169    50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:pfam00071  12 KSSLLIRFTQNKFPEEYIPTIGVDFYTKTIEVDGKTVKLQIWDTAGQERFRALRPLYYRGADGFLLVYDITSRDSFENVK 91
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 21357169   130 DWKRKVENECNE-IPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKCHQ 199
Cdd:pfam00071  92 KWVEEILRHADEnVPIVLVGNKCDLEDQRVVSTEEGEALAKELGLPFMETSAKTNENVEEAFEELAREILK 162
RAB smart00175
Rab subfamily of small GTPases; Rab GTPases are implicated in vesicle trafficking.
50-196 3.31e-54

Rab subfamily of small GTPases; Rab GTPases are implicated in vesicle trafficking.


Pssm-ID: 197555 [Multi-domain]  Cd Length: 164  Bit Score: 172.69  E-value: 3.31e-54
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169     50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:smart00175  13 KSSLLSRFTDGKFSEQYKSTIGVDFKTKTIEVDGKRVKLQIWDTAGQERFRSITSSYYRGAVGALLVYDITNRESFENLE 92
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 21357169    130 DWKRKVENECNE-IPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:smart00175  93 NWLKELREYASPnVVIMLVGNKSDLEEQRQVSREEAEAFAEEHGLPFFETSAKTNTNVEEAFEELARE 160
PLN03110 PLN03110
Rab GTPase; Provisional
50-237 2.16e-29

Rab GTPase; Provisional


Pssm-ID: 178657 [Multi-domain]  Cd Length: 216  Bit Score: 110.40  E-value: 2.16e-29
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169   50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:PLN03110  25 KSNILSRFTRNEFCLESKSTIGVEFATRTLQVEGKTVKAQIWDTAGQERYRAITSAYYRGAVGALLVYDITKRQTFDNVQ 104
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  130 DWKRKVENECNE-IPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKCHQLMTQSyDQV 208
Cdd:PLN03110 105 RWLRELRDHADSnIVIMMAGNKSDLNHLRSVAEEDGQALAEKEGLSFLETSALEATNVEKAFQTILLEIYHIISKK-ALA 183
                        170       180
                 ....*....|....*....|....*....
gi 21357169  209 AGNQQNSSHPPYSSTPTISAFSPTFTKSS 237
Cdd:PLN03110 184 AQEAAANSGLPGQGTTINVADTSGNNKRG 212
Gem1 COG1100
GTPase SAR1 family domain [General function prediction only];
50-200 2.49e-25

GTPase SAR1 family domain [General function prediction only];


Pssm-ID: 440717 [Multi-domain]  Cd Length: 177  Bit Score: 98.51  E-value: 2.49e-25
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKD-YKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAY---YRGAQASVLVFSTTDRASF 125
Cdd:COG1100  16 KTSLVNRLVGDIFSLEkYLSTNGVTIDKKELKLDGLDVDLVIWDTPGQDEFRETRQFYarqLTGASLYLFVVDGTREETL 95
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 21357169 126 DAIKDWKRKVENECNEIPTVIVQNKIDLIEQAVVTADevETLAKLLN----CRLIRTSVKEDINVASVFRYLATKCHQL 200
Cdd:COG1100  96 QSLYELLESLRRLGKKSPIILVLNKIDLYDEEEIEDE--ERLKEALSedniVEVVATSAKTGEGVEELFAALAEILRGE 172
small_GTP TIGR00231
small GTP-binding protein domain; Proteins with a small GTP-binding domain recognized by this ...
50-193 4.95e-21

small GTP-binding protein domain; Proteins with a small GTP-binding domain recognized by this model include Ras, RhoA, Rab11, translation elongation factor G, translation initiation factor IF-2, tetratcycline resistance protein TetM, CDC42, Era, ADP-ribosylation factors, tdhF, and many others. In some proteins the domain occurs more than once.This model recognizes a large number of small GTP-binding proteins and related domains in larger proteins. Note that the alpha chains of heterotrimeric G proteins are larger proteins in which the NKXD motif is separated from the GxxxxGK[ST] motif (P-loop) by a long insert and are not easily detected by this model. [Unknown function, General]


Pssm-ID: 272973 [Multi-domain]  Cd Length: 162  Bit Score: 86.66  E-value: 4.95e-21
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169    50 KSSMIQRYCKG-IFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRA-SFDA 127
Cdd:TIGR00231  14 KSTLLNSLLGNkGSITEYYPGTTRNYVTTVIEEDGKTYKFNLLDTAGQEDYDAIRRLYYPQVERSLRVFDIVILVlDVEE 93
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 21357169   128 IK-DWKRKVENEC-NEIPTVIVQNKIDLIeQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYL 193
Cdd:TIGR00231  94 ILeKQTKEIIHHAdSGVPIILVGNKIDLK-DADLKTHVASEFAKLNGEPIIPLSAETGKNIDSAFKIV 160
 
Name Accession Description Interval E-value
Rab23_like cd04106
Rab GTPase family 23 (Rab23)-like; Rab23-like subfamily. Rab23 is a member of the Rab family ...
50-197 1.02e-90

Rab GTPase family 23 (Rab23)-like; Rab23-like subfamily. Rab23 is a member of the Rab family of small GTPases. In mouse, Rab23 has been shown to function as a negative regulator in the sonic hedgehog (Shh) signaling pathway. Rab23 mediates the activity of Gli2 and Gli3, transcription factors that regulate Shh signaling in the spinal cord, primarily by preventing Gli2 activation in the absence of Shh ligand. Rab23 also regulates a step in the cytoplasmic signal transduction pathway that mediates the effect of Smoothened (one of two integral membrane proteins that are essential components of the Shh signaling pathway in vertebrates). In humans, Rab23 is expressed in the retina. Mice contain an isoform that shares 93% sequence identity with the human Rab23 and an alternative splicing isoform that is specific to the brain. This isoform causes the murine open brain phenotype, indicating it may have a role in the development of the central nervous system. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 133306 [Multi-domain]  Cd Length: 162  Bit Score: 265.46  E-value: 1.02e-90
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEID--GEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDA 127
Cdd:cd04106  13 KSSMIQRFVKGIFTKDYKKTIGVDFLEKQIFLRqsDEDVRLMLWDTAGQEEFDAITKAYYRGAQACILVFSTTDRESFEA 92
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 128 IKDWKRKVENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKC 197
Cdd:cd04106  93 IESWKEKVEAECGDIPMVLVQTKIDLLDQAVITNEEAEALAKRLQLPLFRTSVKDDFNVTELFEYLAEKC 162
Rab cd00154
Ras-related in brain (Rab) family of small guanosine triphosphatases (GTPases); Rab GTPases ...
50-195 1.24e-56

Ras-related in brain (Rab) family of small guanosine triphosphatases (GTPases); Rab GTPases form the largest family within the Ras superfamily. There are at least 60 Rab genes in the human genome, and a number of Rab GTPases are conserved from yeast to humans. Rab GTPases are small, monomeric proteins that function as molecular switches to regulate vesicle trafficking pathways. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they regulate distinct steps in membrane traffic pathways. In the GTP-bound form, Rab GTPases recruit specific sets of effector proteins onto membranes. Through their effectors, Rab GTPases regulate vesicle formation, actin- and tubulin-dependent vesicle movement, and membrane fusion. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which mask C-terminal lipid binding and promote cytosolic localization. While most unicellular organisms possess 5-20 Rab members, several have been found to possess 60 or more Rabs; for many of these Rab isoforms, homologous proteins are not found in other organisms. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Since crystal structures often lack C-terminal residues, the lipid modification site is not available for annotation in many of the CDs in the hierarchy, but is included where possible.


Pssm-ID: 206640 [Multi-domain]  Cd Length: 159  Bit Score: 178.80  E-value: 1.24e-56
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd00154  13 KTSLLLRFVDNKFSENYKSTIGVDFKSKTIEVDGKKVKLQIWDTAGQERFRSITSSYYRGAHGAILVYDVTNRESFENLD 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 21357169 130 DWKRKVENECNE-IPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLAT 195
Cdd:cd00154  93 KWLNELKEYAPPnIPIILVGNKSDLEDERQVSTEEAQQFAKENGLLFFETSAKTGENVDEAFESLAR 159
Ras pfam00071
Ras family; Includes sub-families Ras, Rab, Rac, Ral, Ran, Rap Ypt1 and more. Shares P-loop ...
50-199 5.44e-55

Ras family; Includes sub-families Ras, Rab, Rac, Ral, Ran, Rap Ypt1 and more. Shares P-loop motif with GTP_EFTU, arf and myosin_head. See pfam00009 pfam00025, pfam00063. As regards Rab GTPases, these are important regulators of vesicle formation, motility and fusion. They share a fold in common with all Ras GTPases: this is a six-stranded beta-sheet surrounded by five alpha-helices.


Pssm-ID: 425451 [Multi-domain]  Cd Length: 162  Bit Score: 174.63  E-value: 5.44e-55
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169    50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:pfam00071  12 KSSLLIRFTQNKFPEEYIPTIGVDFYTKTIEVDGKTVKLQIWDTAGQERFRALRPLYYRGADGFLLVYDITSRDSFENVK 91
                          90       100       110       120       130       140       150
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 21357169   130 DWKRKVENECNE-IPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKCHQ 199
Cdd:pfam00071  92 KWVEEILRHADEnVPIVLVGNKCDLEDQRVVSTEEGEALAKELGLPFMETSAKTNENVEEAFEELAREILK 162
RAB smart00175
Rab subfamily of small GTPases; Rab GTPases are implicated in vesicle trafficking.
50-196 3.31e-54

Rab subfamily of small GTPases; Rab GTPases are implicated in vesicle trafficking.


Pssm-ID: 197555 [Multi-domain]  Cd Length: 164  Bit Score: 172.69  E-value: 3.31e-54
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169     50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:smart00175  13 KSSLLSRFTDGKFSEQYKSTIGVDFKTKTIEVDGKRVKLQIWDTAGQERFRSITSSYYRGAVGALLVYDITNRESFENLE 92
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 21357169    130 DWKRKVENECNE-IPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:smart00175  93 NWLKELREYASPnVVIMLVGNKSDLEEQRQVSREEAEAFAEEHGLPFFETSAKTNTNVEEAFEELARE 160
Rab8_Rab10_Rab13_like cd01867
Rab GTPase families 8, 10, 13 (Rab8, Rab10, Rab13); Rab8/Sec4/Ypt2 are known or suspected to ...
50-195 1.27e-42

Rab GTPase families 8, 10, 13 (Rab8, Rab10, Rab13); Rab8/Sec4/Ypt2 are known or suspected to be involved in post-Golgi transport to the plasma membrane. It is likely that these Rabs have functions that are specific to the mammalian lineage and have no orthologs in plants. Rab8 modulates polarized membrane transport through reorganization of actin and microtubules, induces the formation of new surface extensions, and has an important role in directed membrane transport to cell surfaces. The Ypt2 gene of the fission yeast Schizosaccharomyces pombe encodes a member of the Ypt/Rab family of small GTP-binding proteins, related in sequence to Sec4p of Saccharomyces cerevisiae but closer to mammalian Rab8. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206659 [Multi-domain]  Cd Length: 167  Bit Score: 143.18  E-value: 1.27e-42
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd01867  16 KSCLLLRFSEDSFNPSFISTIGIDFKIRTIELDGKKIKLQIWDTAGQERFRTITTSYYRGAMGIILVYDITDEKSFENIK 95
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 21357169 130 DWKRKVENECNE-IPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLAT 195
Cdd:cd01867  96 NWMRNIDEHASEdVERMLVGNKCDMEEKRVVSKEEGEALAREYGIKFLETSAKANINVEEAFLTLAK 162
Rab18 cd01863
Rab GTPase family 18 (Rab18); Rab18 subfamily. Mammalian Rab18 is implicated in endocytic ...
50-196 2.12e-40

Rab GTPase family 18 (Rab18); Rab18 subfamily. Mammalian Rab18 is implicated in endocytic transport and is expressed most highly in polarized epithelial cells. However, trypanosomal Rab, TbRAB18, is upregulated in the BSF (Blood Stream Form) stage and localized predominantly to elements of the Golgi complex. In human and mouse cells, Rab18 has been identified in lipid droplets, organelles that store neutral lipids. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206656 [Multi-domain]  Cd Length: 161  Bit Score: 137.06  E-value: 2.12e-40
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd01863  13 KSSLLLRFTDDTFDEDLSSTIGVDFKVKTVTVDGKKVKLAIWDTAGQERFRTLTSSYYRGAQGVILVYDVTRRDTFDNLD 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 21357169 130 DWKRKVENECNE--IPTVIVQNKIDLiEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:cd01863  93 TWLNELDTYSTNpdAVKMLVGNKIDK-ENREVTREEGQKFARKHNMLFIETSAKTRIGVQQAFEELVEK 160
Ras cd00876
Rat sarcoma (Ras) family of small guanosine triphosphatases (GTPases); The Ras family of the ...
50-196 2.12e-40

Rat sarcoma (Ras) family of small guanosine triphosphatases (GTPases); The Ras family of the Ras superfamily includes classical N-Ras, H-Ras, and K-Ras, as well as R-Ras, Rap, Ral, Rheb, Rhes, ARHI, RERG, Rin/Rit, RSR1, RRP22, Ras2, Ras-dva, and RGK proteins. Ras proteins regulate cell growth, proliferation and differentiation. Ras is activated by guanine nucleotide exchange factors (GEFs) that release GDP and allow GTP binding. Many RasGEFs have been identified. These are sequestered in the cytosol until activation by growth factors triggers recruitment to the plasma membrane or Golgi, where the GEF colocalizes with Ras. Active GTP-bound Ras interacts with several effector proteins: among the best characterized are the Raf kinases, phosphatidylinositol 3-kinase (PI3K), RalGEFs and NORE/MST1. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206642 [Multi-domain]  Cd Length: 160  Bit Score: 137.27  E-value: 2.12e-40
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd00876  12 KSALTIRFVSGEFVEEYDPTIE-DSYRKQIVVDGETYTLDILDTAGQEEFSAMRDQYIRNGDGFILVYSITSRESFEEIK 90
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 21357169 130 DWKRKVEN--ECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:cd00876  91 NIREQILRvkDKEDVPIVLVGNKCDLENERQVSTEEGEALAEEWGCPFLETSAKTNINIDELFNTLVRE 159
Rab1_Ypt1 cd01869
Rab GTPase family 1 includes the yeast homolog Ypt1; Rab1/Ypt1 subfamily. Rab1 is found in ...
50-196 5.50e-40

Rab GTPase family 1 includes the yeast homolog Ypt1; Rab1/Ypt1 subfamily. Rab1 is found in every eukaryote and is a key regulatory component for the transport of vesicles from the ER to the Golgi apparatus. Studies on mutations of Ypt1, the yeast homolog of Rab1, showed that this protein is necessary for the budding of vesicles of the ER as well as for their transport to, and fusion with, the Golgi apparatus. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206661 [Multi-domain]  Cd Length: 166  Bit Score: 136.30  E-value: 5.50e-40
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd01869  15 KSCLLLRFADDTYTESYISTIGVDFKIRTIELDGKTVKLQIWDTAGQERFRTITSSYYRGAHGIIIVYDVTDQESFNNVK 94
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 21357169 130 DWKRKVENECNE-IPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:cd01869  95 QWLQEIDRYASEnVNKLLVGNKCDLTDKKVVDYTEAKEFADELGIPFLETSAKNATNVEEAFMTMARE 162
Rab7 cd01862
Rab GTPase family 7 (Rab7); Rab7 subfamily. Rab7 is a small Rab GTPase that regulates ...
50-196 4.04e-38

Rab GTPase family 7 (Rab7); Rab7 subfamily. Rab7 is a small Rab GTPase that regulates vesicular traffic from early to late endosomal stages of the endocytic pathway. The yeast Ypt7 and mammalian Rab7 are both involved in transport to the vacuole/lysosome, whereas Ypt7 is also required for homotypic vacuole fusion. Mammalian Rab7 is an essential participant in the autophagic pathway for sequestration and targeting of cytoplasmic components to the lytic compartment. Mammalian Rab7 is also proposed to function as a tumor suppressor. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206655 [Multi-domain]  Cd Length: 172  Bit Score: 131.63  E-value: 4.04e-38
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd01862  13 KTSLMNQYVNKKFSNQYKATIGADFLTKEVTVDDRLVTLQIWDTAGQERFQSLGVAFYRGADCCVLVYDVTNPKSFESLD 92
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 21357169 130 DWKRK------VENECNeIPTVIVQNKIDLIEQAVVTADEVETLAKLLNC-RLIRTSVKEDINVASVFRYLATK 196
Cdd:cd01862  93 SWRDEfliqasPRDPEN-FPFVVLGNKIDLEEKRQVSTKKAQQWCKSKGNiPYFETSAKEAINVDQAFETIARL 165
Rab21 cd04123
Rab GTPase family 21 (Rab21); The localization and function of Rab21 are not clearly defined, ...
50-196 1.28e-37

Rab GTPase family 21 (Rab21); The localization and function of Rab21 are not clearly defined, with conflicting data reported. Rab21 has been reported to localize in the ER in human intestinal epithelial cells, with partial colocalization with alpha-glucosidase, a late endosomal/lysosomal marker. More recently, Rab21 was shown to colocalize with and affect the morphology of early endosomes. In Dictyostelium, GTP-bound Rab21, together with two novel LIM domain proteins, LimF and ChLim, has been shown to regulate phagocytosis. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 133323 [Multi-domain]  Cd Length: 162  Bit Score: 130.04  E-value: 1.28e-37
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04123  13 KTSLVLRYVENKFNEKHESTTQASFFQKTVNIGGKRIDLAIWDTAGQERYHALGPIYYRDADGAILVYDITDADSFQKVK 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 21357169 130 DWKRKVENEC-NEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:cd04123  93 KWIKELKQMRgNNISLVIVGNKIDLERQRVVSKSEAEEYAKSVGAKHFETSAKTGKGIEELFLSLAKR 160
Rab32_Rab38 cd04107
Rab GTPase families 18 (Rab18) and 32 (Rab32); Rab38/Rab32 subfamily. Rab32 and Rab38 are ...
50-196 1.54e-37

Rab GTPase families 18 (Rab18) and 32 (Rab32); Rab38/Rab32 subfamily. Rab32 and Rab38 are members of the Rab family of small GTPases. Human Rab32 was first identified in platelets but it is expressed in a variety of cell types, where it functions as an A-kinase anchoring protein (AKAP). Rab38 has been shown to be melanocyte-specific. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins.


Pssm-ID: 206692 [Multi-domain]  Cd Length: 201  Bit Score: 131.28  E-value: 1.54e-37
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEID-GEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAI 128
Cdd:cd04107  13 KTSIIKRYVHGVFSQHYKATIGVDFALKVIEWDpNTVVRLQLWDIAGQERFGGMTRVYYKGAVGAIIVFDVTRPSTFEAV 92
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 21357169 129 KDWKRKVENECN-----EIPTVIVQNKIDLIEQA-VVTADEVETLAK---LLNCrlIRTSVKEDINVASVFRYLATK 196
Cdd:cd04107  93 LKWKADLDSKVTlpngePIPALLLANKCDLKKERlAKDPEQMDQFCKengFIGW--FETSAKENINIEEAMRFLVKN 167
Rab39 cd04111
Rab GTPase family 39 (Rab39); Found in eukaryotes, Rab39 is mainly found in epithelial cell ...
50-201 3.61e-37

Rab GTPase family 39 (Rab39); Found in eukaryotes, Rab39 is mainly found in epithelial cell lines, but is distributed widely in various human tissues and cell lines. It is believed to be a novel Rab protein involved in regulating Golgi-associated vesicular transport during cellular endocytosis. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins.


Pssm-ID: 133311 [Multi-domain]  Cd Length: 211  Bit Score: 130.65  E-value: 3.61e-37
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEI-DGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAI 128
Cdd:cd04111  15 KSSLLKRFTEGRFAEVSDPTVGVDFFSRLIEIePGVRIKLQLWDTAGQERFRSITRSYYRNSVGVLLVFDITNRESFEHV 94
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 21357169 129 KDWKRKVEN--ECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKCHQLM 201
Cdd:cd04111  95 HDWLEEARShiQPHRPVFILVGHKCDLESQRQVTREEAEKLAKDLGMKYIETSARTGDNVEEAFELLTQEIYERI 169
Rab6 cd01861
Rab GTPase family 6 (Rab6); Rab6 is involved in microtubule-dependent transport pathways ...
50-196 7.35e-37

Rab GTPase family 6 (Rab6); Rab6 is involved in microtubule-dependent transport pathways through the Golgi and from endosomes to the Golgi. Rab6A of mammals is implicated in retrograde transport through the Golgi stack, and is also required for a slow, COPI-independent, retrograde transport pathway from the Golgi to the endoplasmic reticulum (ER). This pathway may allow Golgi residents to be recycled through the ER for scrutiny by ER quality-control systems. Yeast Ypt6p, the homolog of the mammalian Rab6 GTPase, is not essential for cell viability. Ypt6p acts in endosome-to-Golgi, in intra-Golgi retrograde transport, and possibly also in Golgi-to-ER trafficking. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206654 [Multi-domain]  Cd Length: 161  Bit Score: 128.12  E-value: 7.35e-37
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd01861  13 KTSIITRFMYDTFDNQYQATIGIDFLSKTMYVDDKTVRLQLWDTAGQERFRSLIPSYIRDSSVAVVVYDITNRQSFDNTD 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 21357169 130 DWKRKVENE-CNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:cd01861  93 KWIDDVRDErGNDVIIVLVGNKTDLSDKRQVSTEEGEKKAKENNAMFIETSAKAGHNVKQLFKKIAQA 160
Rab35 cd04110
Rab GTPase family 35 (Rab35); Rab35 is one of several Rab proteins to be found to participate ...
50-217 1.20e-36

Rab GTPase family 35 (Rab35); Rab35 is one of several Rab proteins to be found to participate in the regulation of osteoclast cells in rats. In addition, Rab35 has been identified as a protein that interacts with nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) in human cells. Overexpression of NPM-ALK is a key oncogenic event in some anaplastic large-cell lymphomas; since Rab35 interacts with N|PM-ALK, it may provide a target for cancer treatments. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins.


Pssm-ID: 133310 [Multi-domain]  Cd Length: 199  Bit Score: 128.82  E-value: 1.20e-36
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04110  19 KSSLLLRFADNTFSGSYITTIGVDFKIRTVEINGERVKLQIWDTAGQERFRTITSTYYRGTHGVIVVYDVTNGESFVNVK 98
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 130 DWKRKVENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFrylatKCH--QLMTQSYDQ 207
Cdd:cd04110  99 RWLQEIEQNCDDVCKVLVGNKNDDPERKVVETEDAYKFAGQMGISLFETSAKENINVEEMF-----NCIteLVLRAKKDN 173
                       170
                ....*....|
gi 21357169 208 VAGNQQNSSH 217
Cdd:cd04110 174 LAKQQQQQQN 183
Roc pfam08477
Ras of Complex, Roc, domain of DAPkinase; Roc, or Ras of Complex, proteins are mitochondrial ...
48-152 2.29e-34

Ras of Complex, Roc, domain of DAPkinase; Roc, or Ras of Complex, proteins are mitochondrial Rho proteins (Miro-1, and Miro-2) and atypical Rho GTPases. Full-length proteins have a unique domain organization, with tandem GTP-binding domains and two EF hand domains (pfam00036) that may bind calcium. They are also larger than classical small GTPases. It has been proposed that they are involved in mitochondrial homeostasis and apoptosis.


Pssm-ID: 462490 [Multi-domain]  Cd Length: 114  Bit Score: 119.92  E-value: 2.29e-34
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169    48 VGKSSMIQRYCKGIFTKDYKKTIGVDFLERQIEI---DGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFsttDRAS 124
Cdd:pfam08477  10 VGKTSLLKRFVDDTFDPKYKSTIGVDFKTKTVLEnddNGKKIKLNIWDTAGQERFRSLHPFYYRGAAAALLVY---DSRT 86
                          90       100
                  ....*....|....*....|....*...
gi 21357169   125 FDAIKDWKRKVENECNEIPTVIVQNKID 152
Cdd:pfam08477  87 FSNLKYWLRELKKYAGNSPVILVGNKID 114
Rab11_like cd01868
Rab GTPase family 11 (Rab11)-like includes Rab11a, Rab11b, and Rab25; Rab11a, Rab11b, and ...
50-196 8.78e-34

Rab GTPase family 11 (Rab11)-like includes Rab11a, Rab11b, and Rab25; Rab11a, Rab11b, and Rab25 are closely related, evolutionary conserved Rab proteins that are differentially expressed. Rab11a is ubiquitously synthesized, Rab11b is enriched in brain and heart and Rab25 is only found in epithelia. Rab11/25 proteins seem to regulate recycling pathways from endosomes to the plasma membrane and to the trans-Golgi network. Furthermore, Rab11a is thought to function in the histamine-induced fusion of tubulovesicles containing H+, K+ ATPase with the plasma membrane in gastric parietal cells and in insulin-stimulated insertion of GLUT4 in the plasma membrane of cardiomyocytes. Overexpression of Rab25 has recently been observed in ovarian cancer and breast cancer, and has been correlated with worsened outcomes in both diseases. In addition, Rab25 overexpression has also been observed in prostate cancer, transitional cell carcinoma of the bladder, and invasive breast tumor cells. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206660 [Multi-domain]  Cd Length: 165  Bit Score: 120.36  E-value: 8.78e-34
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd01868  16 KSNLLSRFTRNEFNLDSKSTIGVEFATRTIQIDGKTIKAQIWDTAGQERYRAITSAYYRGAVGALLVYDITKKSTFENVE 95
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 21357169 130 DWKRKV-ENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:cd01868  96 RWLKELrDHADSNIVIMLVGNKSDLRHLRAVPTEEAKAFAEKNGLSFIETSALDGTNVEEAFKQLLTE 163
RAS smart00173
Ras subfamily of RAS small GTPases; Similar in fold and function to the bacterial EF-Tu GTPase. ...
50-193 1.66e-33

Ras subfamily of RAS small GTPases; Similar in fold and function to the bacterial EF-Tu GTPase. p21Ras couples receptor Tyr kinases and G protein receptors to protein kinase cascades


Pssm-ID: 214541 [Multi-domain]  Cd Length: 164  Bit Score: 119.58  E-value: 1.66e-33
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169     50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:smart00173  13 KSALTIQFIQGHFVDDYDPTIE-DSYRKQIEIDGEVCLLDILDTAGQEEFSAMRDQYMRTGEGFLLVYSITDRQSFEEIK 91
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 21357169    130 DWKRKVEN--ECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYL 193
Cdd:smart00173  92 KFREQILRvkDRDDVPIVLVGNKCDLESERVVSTEEGKELARQWGCPFLETSAKERVNVDEAFYDL 157
small_GTPase smart00010
Small GTPase of the Ras superfamily; ill-defined subfamily; SMART predicts Ras-like small ...
50-193 1.99e-33

Small GTPase of the Ras superfamily; ill-defined subfamily; SMART predicts Ras-like small GTPases of the ARF, RAB, RAN, RAS, and SAR subfamilies. Others that could not be classified in this way are predicted to be members of the small GTPase superfamily without predictions of the subfamily.


Pssm-ID: 197466 [Multi-domain]  Cd Length: 166  Bit Score: 119.20  E-value: 1.99e-33
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169     50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:smart00010  15 KSALTIQFVQGHFVDEYDPTIE-DSYRKQIEIDGEVCLLDILDTAGQEEFSAMRDQYMRTGEGFLLVYSITDRQSFEEIA 93
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 21357169    130 DWKRKVEN--ECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYL 193
Cdd:smart00010  94 KFREQILRvkDRDDVPIVLVGNKCDLENERVVSTEEGKELARQWGCPFLETSAKERINVDEAFYDL 159
Rab30 cd04114
Rab GTPase family 30 (Rab30); Rab30 subfamily. Rab30 appears to be associated with the Golgi ...
50-196 1.39e-32

Rab GTPase family 30 (Rab30); Rab30 subfamily. Rab30 appears to be associated with the Golgi stack. It is expressed in a wide variety of tissue types and in humans maps to chromosome 11. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 133314 [Multi-domain]  Cd Length: 169  Bit Score: 117.31  E-value: 1.39e-32
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04114  20 KTCLVRRFTQGLFPPGQGATIGVDFMIKTVEIKGEKIKLQIWDTAGQERFRSITQSYYRSANALILTYDITCEESFRCLP 99
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 21357169 130 DWKRKVENECN-EIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:cd04114 100 EWLREIEQYANnKVITILVGNKIDLAERREVSQQRAEEFSDAQDMYYLETSAKESDNVEKLFLDLACR 167
Rab19 cd01864
Rab GTPase family 19 (Rab19); Rab19 subfamily. Rab19 proteins are associated with Golgi stacks. ...
50-195 1.55e-32

Rab GTPase family 19 (Rab19); Rab19 subfamily. Rab19 proteins are associated with Golgi stacks. Similarity analysis indicated that Rab41 is closely related to Rab19. However, the function of these Rabs is not yet characterized. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 133267 [Multi-domain]  Cd Length: 165  Bit Score: 117.15  E-value: 1.55e-32
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd01864  16 KTCVVQRFKSGTFSERQGNTIGVDFTMKTLEIQGKRVKLQIWDTAGQERFRTITQSYYRSANGAIIAYDITRRSSFESVP 95
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 21357169 130 DWKRKVEN-ECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNC-RLIRTSVKEDINVASVFRYLAT 195
Cdd:cd01864  96 HWIEEVEKyGASNVVLLLIGNKCDLEEQREVLFEEACTLAEHYGIlAVLETSAKESSNVEEAFLLMAT 163
Rab33B_Rab33A cd04115
Rab GTPase family 33 includes Rab33A and Rab33B; Rab33B/Rab33A subfamily. Rab33B is ...
50-196 4.44e-32

Rab GTPase family 33 includes Rab33A and Rab33B; Rab33B/Rab33A subfamily. Rab33B is ubiquitously expressed in mouse tissues and cells, where it is localized to the medial Golgi cisternae. It colocalizes with alpha-mannose II. Together with the other cisternal Rabs, Rab6A and Rab6A', it is believed to regulate the Golgi response to stress and is likely a molecular target in stress-activated signaling pathways. Rab33A (previously known as S10) is expressed primarily in the brain and immune system cells. In humans, it is located on the X chromosome at Xq26 and its expression is down-regulated in tuberculosis patients. Experimental evidence suggests that Rab33A is a novel CD8+ T cell factor that likely plays a role in tuberculosis disease processes. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 133315 [Multi-domain]  Cd Length: 170  Bit Score: 116.00  E-value: 4.44e-32
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEF-DCITKAYYRGAQASVLVFSTTDRASFDAI 128
Cdd:cd04115  15 KTCLTYRFCAGRFPERTEATIGVDFRERTVEIDGERIKVQLWDTAGQERFrKSMVQHYYRNVHAVVFVYDVTNMASFHSL 94
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 21357169 129 KDWkrkVEnECN------EIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVK---EDINVASVFRYLATK 196
Cdd:cd04115  95 PSW---IE-ECEqhslpnEVPRILVGNKCDLREQIQVPTDLAQRFADAHSMPLFETSAKdpsENDHVEAIFMTLAHK 167
Rab5_related cd01860
Rab-related GTPase family includes Rab5 and Rab22; regulates early endosome fusion; The ...
50-196 5.46e-32

Rab-related GTPase family includes Rab5 and Rab22; regulates early endosome fusion; The Rab5-related subfamily includes Rab5 and Rab22 of mammals, Ypt51/Ypt52/Ypt53 of yeast, and RabF of plants. The members of this subfamily are involved in endocytosis and endocytic-sorting pathways. In mammals, Rab5 GTPases localize to early endosomes and regulate fusion of clathrin-coated vesicles to early endosomes and fusion between early endosomes. In yeast, Ypt51p family members similarly regulate membrane trafficking through prevacuolar compartments. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206653 [Multi-domain]  Cd Length: 163  Bit Score: 115.34  E-value: 5.46e-32
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd01860  14 KSSIVLRFVKNEFSENQESTIGAAFLTQTVNLDDTTVKFEIWDTAGQERYRSLAPMYYRGAAAAIVVYDITSEESFEKAK 93
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 21357169 130 DWKRKV-ENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:cd01860  94 SWVKELqEHGPPNIVIALAGNKADLESKRQVSTEEAQEYADENGLLFMETSAKTGENVNELFTEIARK 161
PLN03110 PLN03110
Rab GTPase; Provisional
50-237 2.16e-29

Rab GTPase; Provisional


Pssm-ID: 178657 [Multi-domain]  Cd Length: 216  Bit Score: 110.40  E-value: 2.16e-29
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169   50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:PLN03110  25 KSNILSRFTRNEFCLESKSTIGVEFATRTLQVEGKTVKAQIWDTAGQERYRAITSAYYRGAVGALLVYDITKRQTFDNVQ 104
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  130 DWKRKVENECNE-IPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKCHQLMTQSyDQV 208
Cdd:PLN03110 105 RWLRELRDHADSnIVIMMAGNKSDLNHLRSVAEEDGQALAEKEGLSFLETSALEATNVEKAFQTILLEIYHIISKK-ALA 183
                        170       180
                 ....*....|....*....|....*....
gi 21357169  209 AGNQQNSSHPPYSSTPTISAFSPTFTKSS 237
Cdd:PLN03110 184 AQEAAANSGLPGQGTTINVADTSGNNKRG 212
Rab3 cd01865
Rab GTPase family 3 contains Rab3A, Rab3B, Rab3C and Rab3D; The Rab3 subfamily contains Rab3A, ...
50-193 3.26e-29

Rab GTPase family 3 contains Rab3A, Rab3B, Rab3C and Rab3D; The Rab3 subfamily contains Rab3A, Rab3B, Rab3C, and Rab3D. All four isoforms were found in mouse brain and endocrine tissues, with varying levels of expression. Rab3A, Rab3B, and Rab3C localized to synaptic and secretory vesicles; Rab3D was expressed at high levels only in adipose tissue, exocrine glands, and the endocrine pituitary, where it is localized to cytoplasmic secretory granules. Rab3 appears to control Ca2+-regulated exocytosis. The appropriate GDP/GTP exchange cycle of Rab3A is required for Ca2+-regulated exocytosis to occur, and interaction of the GTP-bound form of Rab3A with effector molecule(s) is widely believed to be essential for this process. Functionally, most studies point toward a role for Rab3 in the secretion of hormones and neurotransmitters. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206657 [Multi-domain]  Cd Length: 165  Bit Score: 108.46  E-value: 3.26e-29
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd01865  14 KTSFLFRYADDSFTSAFVSTVGIDFKVKTVYRNDKRIKLQIWDTAGQERYRTITTAYYRGAMGFILMYDITNEESFNAVQ 93
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 21357169 130 DWKRKVENECNEIPTVI-VQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYL 193
Cdd:cd01865  94 DWSTQIKTYSWDNAQVIlVGNKCDMEDERVVSAERGRQLADQLGFEFFEASAKENINVKQVFERL 158
PLN03118 PLN03118
Rab family protein; Provisional
50-219 1.17e-28

Rab family protein; Provisional


Pssm-ID: 215587 [Multi-domain]  Cd Length: 211  Bit Score: 108.22  E-value: 1.17e-28
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169   50 KSSMIQRYCKGIfTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:PLN03118  27 KSSLLVSFISSS-VEDLAPTIGVDFKIKQLTVGGKRLKLTIWDTAGQERFRTLTSSYYRNAQGIILVYDVTRRETFTNLS 105
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  130 D-WKRKVENEC--NEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKCHQ---LMTQ 203
Cdd:PLN03118 106 DvWGKEVELYStnQDCVKMLVGNKVDRESERDVSREEGMALAKEHGCLFLECSAKTRENVEQCFEELALKIMEvpsLLEE 185
                        170
                 ....*....|....*....
gi 21357169  204 SYDQVAGN---QQNSSHPP 219
Cdd:PLN03118 186 GSTAVKRNilkQKPEHQPP 204
M_R_Ras_like cd04145
R-Ras2/TC21, M-Ras/R-Ras3; The M-Ras/R-Ras-like subfamily contains R-Ras2/TC21, M-Ras/R-Ras3, ...
50-190 2.89e-28

R-Ras2/TC21, M-Ras/R-Ras3; The M-Ras/R-Ras-like subfamily contains R-Ras2/TC21, M-Ras/R-Ras3, and related members of the Ras family. M-Ras is expressed in lympho-hematopoetic cells. It interacts with some of the known Ras effectors, but appears to also have its own effectors. Expression of mutated M-Ras leads to transformation of several types of cell lines, including hematopoietic cells, mammary epithelial cells, and fibroblasts. Overexpression of M-Ras is observed in carcinomas from breast, uterus, thyroid, stomach, colon, kidney, lung, and rectum. In addition, expression of a constitutively active M-Ras mutant in murine bone marrow induces a malignant mast cell leukemia that is distinct from the monocytic leukemia induced by H-Ras. TC21, along with H-Ras, has been shown to regulate the branching morphogenesis of ureteric bud cell branching in mice. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 133345 [Multi-domain]  Cd Length: 164  Bit Score: 105.95  E-value: 2.89e-28
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04145  15 KSALTIQFIQSYFVTDYDPTIE-DSYTKQCEIDGQWARLDILDTAGQEEFSAMREQYMRTGEGFLLVFSVTDRGSFEEVD 93
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 21357169 130 DWKRKV--ENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVF 190
Cdd:cd04145  94 KFHTQIlrVKDRDEFPMILVGNKADLEHQRQVSREEGQELARQLKIPYIETSAKDRVNVDKAF 156
Rab2 cd01866
Rab GTPase family 2 (Rab2); Rab2 is localized on cis-Golgi membranes and interacts with Golgi ...
50-199 3.77e-28

Rab GTPase family 2 (Rab2); Rab2 is localized on cis-Golgi membranes and interacts with Golgi matrix proteins. Rab2 is also implicated in the maturation of vesicular tubular clusters (VTCs), which are microtubule-associated intermediates in transport between the ER and Golgi apparatus. In plants, Rab2 regulates vesicle trafficking between the ER and the Golgi bodies and is important to pollen tube growth. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206658 [Multi-domain]  Cd Length: 168  Bit Score: 105.58  E-value: 3.77e-28
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd01866  17 KSCLLLQFTDKRFQPVHDLTIGVEFGARMITIDGKQIKLQIWDTAGQESFRSITRSYYRGAAGALLVYDITRRETFNHLT 96
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 21357169 130 DWKRKVENECNEIPTVI-VQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKCHQ 199
Cdd:cd01866  97 SWLEDARQHSNSNMTIMlIGNKCDLESRREVSYEEGEAFAREHGLIFMETSAKTASNVEEAFINTAKEIYD 167
Rab12 cd04120
Rab GTPase family 12 (Rab12); Rab12 was first identified in canine cells, where it was ...
50-190 4.25e-28

Rab GTPase family 12 (Rab12); Rab12 was first identified in canine cells, where it was localized to the Golgi complex. The specific function of Rab12 remains unknown, and inconsistent results about its cellular localization have been reported. More recent studies have identified Rab12 associated with post-Golgi vesicles, or with other small vesicle-like structures but not with the Golgi complex. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins.


Pssm-ID: 206699 [Multi-domain]  Cd Length: 202  Bit Score: 106.64  E-value: 4.25e-28
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04120  13 KTSLMERFTDDTFCEACKSTVGVDFKIKTVELRGKKIRLQIWDTAGQERFNSITSAYYRSAKGIILVYDITKKETFDDLP 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 21357169 130 DWKRKVENECNE-IPTVIVQNKIDLIEQAVVTADEVETLA-KLLNCRLIRTSVKEDINVASVF 190
Cdd:cd04120  93 KWMKMIDKYASEdAELLLVGNKLDCETDREITRQQGEKFAqQITGMRFCEASAKDNFNVDEIF 155
Rab9 cd04116
Rab GTPase family 9 (Rab9); Rab9 is found in late endosomes, together with mannose 6-phosphate ...
50-190 4.55e-28

Rab GTPase family 9 (Rab9); Rab9 is found in late endosomes, together with mannose 6-phosphate receptors (MPRs) and the tail-interacting protein of 47 kD (TIP47). Rab9 is a key mediator of vesicular transport from late endosomes to the trans-Golgi network (TGN) by redirecting the MPRs. Rab9 has been identified as a key component for the replication of several viruses, including HIV1, Ebola, Marburg, and measles, making it a potential target for inhibiting a variety of viruses. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206697 [Multi-domain]  Cd Length: 170  Bit Score: 105.73  E-value: 4.55e-28
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04116  18 KSSLMNRYVTNKFDTQLFHTIGVEFLNKDLEVDGHFVTLQIWDTAGQERFRSLRTPFYRGSDCCLLTFSVDDSQSFQNLS 97
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 21357169 130 DWKRKVEN-----ECNEIPTVIVQNKIDlIEQAVVTADEVET-LAKLLNCRLIRTSVKEDINVASVF 190
Cdd:cd04116  98 NWKKEFIYyadvkEPESFPFVILGNKID-IPERQVSTEEAQAwCRDNGDYPYFETSAKDATNVAAAF 163
RJL cd04119
Rab GTPase family J-like (RabJ-like); RJLs are found in many protists and as chimeras with ...
50-193 1.00e-26

Rab GTPase family J-like (RabJ-like); RJLs are found in many protists and as chimeras with C-terminal DNAJ domains in deuterostome metazoa. They are not found in plants, fungi, and protostome metazoa, suggesting a horizontal gene transfer between protists and deuterostome metazoa. RJLs lack any known membrane targeting signal and contain a degenerate phosphate/magnesium-binding 3 (PM3) motif, suggesting an impaired ability to hydrolyze GTP. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization.


Pssm-ID: 133319 [Multi-domain]  Cd Length: 168  Bit Score: 102.05  E-value: 1.00e-26
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04119  13 KSCIIKRYCEGRFVSKYLPTIGIDYGVKKVSVRNKEVRVNFFDLSGHPEYLEVRNEFYKDTQGVLLVYDVTDRQSFEALD 92
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 130 DWKRKVENECN------EIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYL 193
Cdd:cd04119  93 SWLKEMKQEGGphgnmeNIVVVVCANKIDLTKHRAVSEDEGRLWAESKGFKYFETSACTGEGVNEMFQTL 162
Rab14 cd04122
Rab GTPase family 14 (Rab14); Rab14 GTPases are localized to biosynthetic compartments, ...
50-199 1.33e-26

Rab GTPase family 14 (Rab14); Rab14 GTPases are localized to biosynthetic compartments, including the rough ER, the Golgi complex, and the trans-Golgi network, and to endosomal compartments, including early endosomal vacuoles and associated vesicles. Rab14 is believed to function in both the biosynthetic and recycling pathways between the Golgi and endosomal compartments. Rab14 has also been identified on GLUT4 vesicles, and has been suggested to help regulate GLUT4 translocation. In addition, Rab14 is believed to play a role in the regulation of phagocytosis. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 133322 [Multi-domain]  Cd Length: 166  Bit Score: 101.84  E-value: 1.33e-26
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04122  15 KSCLLHQFTEKKFMADCPHTIGVEFGTRIIEVNGQKIKLQIWDTAGQERFRAVTRSYYRGAAGALMVYDITRRSTYNHLS 94
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 21357169 130 DWKRKVENECNEiPTVI--VQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKCHQ 199
Cdd:cd04122  95 SWLTDARNLTNP-NTVIflIGNKADLEAQRDVTYEEAKQFADENGLLFLECSAKTGENVEDAFLETAKKIYQ 165
Rab36_Rab34 cd04108
Rab GTPase families 34 (Rab34) and 36 (Rab36); Rab34/Rab36 subfamily. Rab34, found primarily ...
50-195 1.85e-26

Rab GTPase families 34 (Rab34) and 36 (Rab36); Rab34/Rab36 subfamily. Rab34, found primarily in the Golgi, interacts with its effector, Rab-interacting lysosomal protein (RILP). This enables its participation in microtubular dynenin-dynactin-mediated repositioning of lysosomes from the cell periphery to the Golgi. A Rab34 (Rah) isoform that lacks the consensus GTP-binding region has been identified in mice. This isoform is associated with membrane ruffles and promotes macropinosome formation. Rab36 has been mapped to human chromosome 22q11.2, a region that is homozygously deleted in malignant rhabdoid tumors (MRTs). However, experimental assessments do not implicate Rab36 as a tumor suppressor that would enable tumor formation through a loss-of-function mechanism. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins.


Pssm-ID: 206693 [Multi-domain]  Cd Length: 170  Bit Score: 101.49  E-value: 1.85e-26
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04108  13 KTCLINRFCKDVFDKNYKATIGVDFEMERFEVLGVPFSLQLWDTAGQERFKCIASTYYRGAQAIIIVFDLTDVASLEHTR 92
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 130 DWKRKV--ENECNEIPTVIVQNKIDLIEQAVVTADEVET--LAKLLNCRLIRTSVKEDINVASVFRYLAT 195
Cdd:cd04108  93 QWLEDAlkENDPSSVLLFLVGTKKDLSSPAQYALMEQDAikLAREMKAEYWAVSALTGENVRDFFFRVAS 162
RheB cd04137
Ras Homolog Enriched in Brain (RheB) is a small GTPase; Rheb (Ras Homolog Enriched in Brain) ...
50-193 3.74e-26

Ras Homolog Enriched in Brain (RheB) is a small GTPase; Rheb (Ras Homolog Enriched in Brain) subfamily. Rheb was initially identified in rat brain, where its expression is elevated by seizures or by long-term potentiation. It is expressed ubiquitously, with elevated levels in muscle and brain. Rheb functions as an important mediator between the tuberous sclerosis complex proteins, TSC1 and TSC2, and the mammalian target of rapamycin (TOR) kinase to stimulate cell growth. TOR kinase regulates cell growth by controlling nutrient availability, growth factors, and the energy status of the cell. TSC1 and TSC2 form a dimeric complex that has tumor suppressor activity, and TSC2 is a GTPase activating protein (GAP) for Rheb. The TSC1/TSC2 complex inhibits the activation of TOR kinase through Rheb. Rheb has also been shown to induce the formation of large cytoplasmic vacuoles in a process that is dependent on the GTPase cycle of Rheb, but independent of the TOR kinase, suggesting Rheb plays a role in endocytic trafficking that leads to cell growth and cell-cycle progression. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins.


Pssm-ID: 206709 [Multi-domain]  Cd Length: 180  Bit Score: 100.78  E-value: 3.74e-26
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFlERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04137  14 KSSLTVQFVEGHFVESYYPTIENTF-SKIITYKGQEYHLEIVDTAGQDEYSILPQKYSIGIHGYILVYSVTSRKSFEVVK 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 21357169 130 DWKRKVENEC--NEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYL 193
Cdd:cd04137  93 VIYDKILDMLgkESVPIVLVGNKSDLHMERQVSAEEGKKLAESWGAAFLESSAKENENVEEAFELL 158
Rap1 cd04175
Rap1 family GTPase consists of Rap1a and Rap1b isoforms; The Rap1 subgroup is part of the Rap ...
50-190 2.14e-25

Rap1 family GTPase consists of Rap1a and Rap1b isoforms; The Rap1 subgroup is part of the Rap subfamily of the Ras family. It can be further divided into the Rap1a and Rap1b isoforms. In humans, Rap1a and Rap1b share 95% sequence homology, but are products of two different genes located on chromosomes 1 and 12, respectively. Rap1a is sometimes called smg p21 or Krev1 in the older literature. Rap1 proteins are believed to perform different cellular functions, depending on the isoform, its subcellular localization, and the effector proteins it binds. For example, in rat salivary gland, neutrophils, and platelets, Rap1 localizes to secretory granules and is believed to regulate exocytosis or the formation of secretory granules. Rap1 has also been shown to localize in the Golgi of rat fibroblasts, zymogen granules, plasma membrane, and the microsomal membrane of pancreatic acini, as well as in the endocytic compartment of skeletal muscle cells and fibroblasts. High expression of Rap1 has been observed in the nucleus of human oropharyngeal squamous cell carcinomas (SCCs) and cell lines; interestingly, in the SCCs, the active GTP-bound form localized to the nucleus, while the inactive GDP-bound form localized to the cytoplasm. Rap1 plays a role in phagocytosis by controlling the binding of adhesion receptors (typically integrins) to their ligands. In yeast, Rap1 has been implicated in multiple functions, including activation and silencing of transcription and maintenance of telomeres. Rap1a, which is stimulated by T-cell receptor (TCR) activation, is a positive regulator of T cells by directing integrin activation and augmenting lymphocyte responses. In murine hippocampal neurons, Rap1b determines which neurite will become the axon and directs the recruitment of Cdc42, which is required for formation of dendrites and axons. In murine platelets, Rap1b is required for normal homeostasis in vivo and is involved in integrin activation. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 133375 [Multi-domain]  Cd Length: 164  Bit Score: 98.36  E-value: 2.14e-25
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04175  14 KSALTVQFVQGIFVEKYDPTIE-DSYRKQVEVDGQQCMLEILDTAGTEQFTAMRDLYMKNGQGFVLVYSITAQSTFNDLQ 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 21357169 130 DWKRKV--ENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVF 190
Cdd:cd04175  93 DLREQIlrVKDTEDVPMILVGNKCDLEDERVVGKEQGQNLARQWGCAFLETSAKAKINVNEIF 155
Gem1 COG1100
GTPase SAR1 family domain [General function prediction only];
50-200 2.49e-25

GTPase SAR1 family domain [General function prediction only];


Pssm-ID: 440717 [Multi-domain]  Cd Length: 177  Bit Score: 98.51  E-value: 2.49e-25
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKD-YKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAY---YRGAQASVLVFSTTDRASF 125
Cdd:COG1100  16 KTSLVNRLVGDIFSLEkYLSTNGVTIDKKELKLDGLDVDLVIWDTPGQDEFRETRQFYarqLTGASLYLFVVDGTREETL 95
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 21357169 126 DAIKDWKRKVENECNEIPTVIVQNKIDLIEQAVVTADevETLAKLLN----CRLIRTSVKEDINVASVFRYLATKCHQL 200
Cdd:COG1100  96 QSLYELLESLRRLGKKSPIILVLNKIDLYDEEEIEDE--ERLKEALSedniVEVVATSAKTGEGVEELFAALAEILRGE 172
Rab4 cd04113
Rab GTPase family 4 (Rab4); Rab4 subfamily. Rab4 has been implicated in numerous functions ...
50-190 2.69e-25

Rab GTPase family 4 (Rab4); Rab4 subfamily. Rab4 has been implicated in numerous functions within the cell. It helps regulate endocytosis through the sorting, recycling, and degradation of early endosomes. Mammalian Rab4 is involved in the regulation of many surface proteins including G-protein-coupled receptors, transferrin receptor, integrins, and surfactant protein A. Experimental data implicate Rab4 in regulation of the recycling of internalized receptors back to the plasma membrane. It is also believed to influence receptor-mediated antigen processing in B-lymphocytes, in calcium-dependent exocytosis in platelets, in alpha-amylase secretion in pancreatic cells, and in insulin-induced translocation of Glut4 from internal vesicles to the cell surface. Rab4 is known to share effector proteins with Rab5 and Rab11. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206696 [Multi-domain]  Cd Length: 161  Bit Score: 97.89  E-value: 2.69e-25
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04113  13 KSCLLHQFIENKFKQDSNHTIGVEFGSRVVNVGGKSVKLQIWDTAGQERFRSVTRSYYRGAAGALLVYDITSRESFNALT 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 21357169 130 DWKRKVENECN-EIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVF 190
Cdd:cd04113  93 NWLTDARTLASpDIVIILVGNKKDLEDDREVTFLEASRFAQENGLLFLETSALTGENVEEAF 154
PLN03108 PLN03108
Rab family protein; Provisional
50-239 5.56e-25

Rab family protein; Provisional


Pssm-ID: 178655 [Multi-domain]  Cd Length: 210  Bit Score: 98.47  E-value: 5.56e-25
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169   50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:PLN03108  19 KSCLLLQFTDKRFQPVHDLTIGVEFGARMITIDNKPIKLQIWDTAGQESFRSITRSYYRGAAGALLVYDITRRETFNHLA 98
                         90       100       110       120       130       140       150       160
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  130 DWKRKVENECNEIPTV-IVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKCHQLMTQSYDQV 208
Cdd:PLN03108  99 SWLEDARQHANANMTImLIGNKCDLAHRRAVSTEEGEQFAKEHGLIFMEASAKTAQNVEEAFIKTAAKIYKKIQDGVFDV 178
                        170       180       190
                 ....*....|....*....|....*....|.
gi 21357169  209 AgNQQNSSHPPYSSTPTISAFSPTFTKSSSG 239
Cdd:PLN03108 179 S-NESYGIKVGYGAIPGASGGRDGTSSQGGG 208
Ran cd00877
Ras-related nuclear proteins (Ran)/TC4 family of small GTPases; Ran GTPase is involved in ...
50-196 2.37e-23

Ras-related nuclear proteins (Ran)/TC4 family of small GTPases; Ran GTPase is involved in diverse biological functions, such as nuclear transport, spindle formation during mitosis, DNA replication, and cell division. Among the Ras superfamily, Ran is a unique small G protein. It does not have a lipid modification motif at the C-terminus to bind to the membrane, which is often observed within the Ras superfamily. Ran may therefore interact with a wide range of proteins in various intracellular locations. Like other GTPases, Ran exists in GTP- and GDP-bound conformations that interact differently with effectors. Conversion between these forms and the assembly or disassembly of effector complexes requires the interaction of regulator proteins. The intrinsic GTPase activity of Ran is very low, but it is greatly stimulated by a GTPase-activating protein (RanGAP1) located in the cytoplasm. By contrast, RCC1, a guanine nucleotide exchange factor that generates RanGTP, is bound to chromatin and confined to the nucleus. Ran itself is mobile and is actively imported into the nucleus by a mechanism involving NTF-2. Together with the compartmentalization of its regulators, this is thought to produce a relatively high concentration of RanGTP in the nucleus.


Pssm-ID: 206643 [Multi-domain]  Cd Length: 166  Bit Score: 93.13  E-value: 2.37e-23
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd00877  13 KTTFVKRHLTGEFEKKYVATLGVEVHPLDFHTNRGKIRFNVWDTAGQEKFGGLRDGYYIQGQCAIIMFDVTSRVTYKNVP 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 21357169 130 DWKRKVENECNEIPTVIVQNKIDlIEQAVVTADEVETLAKlLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:cd00877  93 NWHRDLVRVCENIPIVLCGNKVD-IKDRKVKPKQITFHRK-KNLQYYEISAKSNYNFEKPFLWLARK 157
Rab26 cd04112
Rab GTPase family 26 (Rab26); Rab26 subfamily. First identified in rat pancreatic acinar cells, ...
50-207 3.09e-23

Rab GTPase family 26 (Rab26); Rab26 subfamily. First identified in rat pancreatic acinar cells, Rab26 is believed to play a role in recruiting mature granules to the plasma membrane upon beta-adrenergic stimulation. Rab26 belongs to the Rab functional group III, which are considered key regulators of intracellular vesicle transport during exocytosis. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins.


Pssm-ID: 206695 [Multi-domain]  Cd Length: 191  Bit Score: 93.39  E-value: 3.09e-23
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTK-DYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAI 128
Cdd:cd04112  13 KTCLLVRFKDGAFLAgSFIATVGIQFTNKVVTVDGVKVKLQIWDTAGQERFRSVTHAYYRDAHALLLLYDVTNKSSFDNI 92
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 129 KDWKRKV-ENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLAtkcHQLMTQSYDQ 207
Cdd:cd04112  93 RAWLTEIlEYAQSDVVIMLLGNKADMSGERVVKREDGERLAKEYGVPFMETSAKTGLNVELAFTAVA---KELKHRSVEQ 169
Rab28 cd04109
Rab GTPase family 28 (Rab28); Rab28 subfamily. First identified in maize, Rab28 has been shown ...
50-196 7.53e-23

Rab GTPase family 28 (Rab28); Rab28 subfamily. First identified in maize, Rab28 has been shown to be a late embryogenesis-abundant (Lea) protein that is regulated by the plant hormone abcisic acid (ABA). In Arabidopsis, Rab28 is expressed during embryo development and is generally restricted to provascular tissues in mature embryos. Unlike maize Rab28, it is not ABA-inducible. Characterization of the human Rab28 homolog revealed two isoforms, which differ by a 95-base pair insertion, producing an alternative sequence for the 30 amino acids at the C-terminus. The two human isoforms are presumably the result of alternative splicing. Since they differ at the C-terminus but not in the GTP-binding region, they are predicted to be targeted to different cellular locations. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins.


Pssm-ID: 206694 [Multi-domain]  Cd Length: 213  Bit Score: 92.94  E-value: 7.53e-23
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGE-DVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAI 128
Cdd:cd04109  13 KTSLIRRFAQEGFGKSYKQTIGLDFFSRRITLPGSlNVTLQVWDIGGQQIGGKMLDKYIYGAQAVCLVYDITNSQSFENL 92
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 21357169 129 KDWK---RKVENECNEIP-TVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:cd04109  93 EDWLsvvKKVNEESETKPkMVLVGNKTDLEHNRQVTAEKHARFAQENDMESIFVSAKTGDRVFLCFQRIAAE 164
Rho cd00157
Ras homology family (Rho) of small guanosine triphosphatases (GTPases); Members of the Rho ...
50-190 1.28e-22

Ras homology family (Rho) of small guanosine triphosphatases (GTPases); Members of the Rho (Ras homology) family include RhoA, Cdc42, Rac, Rnd, Wrch1, RhoBTB, and Rop. There are 22 human Rho family members identified currently. These proteins are all involved in the reorganization of the actin cytoskeleton in response to external stimuli. They also have roles in cell transformation by Ras in cytokinesis, in focal adhesion formation and in the stimulation of stress-activated kinase. These various functions are controlled through distinct effector proteins and mediated through a GTP-binding/GTPase cycle involving three classes of regulating proteins: GAPs (GTPase-activating proteins), GEFs (guanine nucleotide exchange factors), and GDIs (guanine nucleotide dissociation inhibitors). Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Since crystal structures often lack C-terminal residues, this feature is not available for annotation in many of the CDs in the hierarchy.


Pssm-ID: 206641 [Multi-domain]  Cd Length: 171  Bit Score: 91.07  E-value: 1.28e-22
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIgVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd00157  13 KTCLLISYTTNKFPTEYVPTV-FDNYSANVTVDGKQVNLGLWDTAGQEEYDRLRPLSYPQTDVFLLCFSVDSPSSFENVK 91
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 21357169 130 D-WKRKVENECNEIPTVIVQNKIDLIE-----------QAVVTADEVETLAKLLNC-RLIRTSVKEDINVASVF 190
Cdd:cd00157  92 TkWYPEIKHYCPNVPIILVGTKIDLRDdgntlkklekkQKPITPEEGEKLAKEIGAvKYMECSALTQEGLKEVF 165
Rab15 cd04117
Rab GTPase family 15 (Rab15); Rab15 colocalizes with the transferrin receptor in early ...
50-194 3.23e-22

Rab GTPase family 15 (Rab15); Rab15 colocalizes with the transferrin receptor in early endosome compartments, but not with late endosomal markers. It codistributes with Rab4 and Rab5 on early/sorting endosomes, and with Rab11 on pericentriolar recycling endosomes. It is believed to function as an inhibitory GTPase that regulates distinct steps in early endocytic trafficking. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206698 [Multi-domain]  Cd Length: 164  Bit Score: 90.04  E-value: 3.23e-22
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04117  13 KTCLLCRFTDNEFHSSHISTIGVDFKMKTIEVDGIKVRIQIWDTAGQERYQTITKQYYRRAQGIFLVYDISSERSYQHIM 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*.
gi 21357169 130 DWKRKVENECNE-IPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLA 194
Cdd:cd04117  93 KWVSDVDEYAPEgVQKILIGNKADEEQKRQVGDEQGNKLAKEYGMDFFETSACTNKNIKESFTRLT 158
RHO smart00174
Rho (Ras homology) subfamily of Ras-like small GTPases; Members of this subfamily of Ras-like ...
50-190 6.76e-22

Rho (Ras homology) subfamily of Ras-like small GTPases; Members of this subfamily of Ras-like small GTPases include Cdc42 and Rac, as well as Rho isoforms.


Pssm-ID: 197554 [Multi-domain]  Cd Length: 174  Bit Score: 89.59  E-value: 6.76e-22
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169     50 KSSMIQRYCKGIFTKDYKKTIGVDFLErQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:smart00174  11 KTCLLIVYTTNAFPEDYVPTVFENYSA-DVEVDGKPVELGLWDTAGQEDYDRLRPLSYPDTDVFLICFSVDSPASFENVK 89
                           90       100       110       120       130       140       150
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 21357169    130 D-WKRKVENECNEIPTVIVQNKIDL------------IEQAVVTADEVETLAKLLN-CRLIRTSVKEDINVASVF 190
Cdd:smart00174  90 EkWYPEVKHFCPNVPIILVGTKLDLrndkstleelskKKQEPVTYEQGQALAKRIGaVKYLECSALTQEGVREVF 164
Rab40 cd04121
Rab GTPase family 40 (Rab40) contains Rab40a, Rab40b and Rab40c; The Rab40 subfamily contains ...
66-194 8.28e-22

Rab GTPase family 40 (Rab40) contains Rab40a, Rab40b and Rab40c; The Rab40 subfamily contains Rab40a, Rab40b, and Rab40c, which are all highly homologous. In rat, Rab40c is localized to the perinuclear recycling compartment (PRC), and is distributed in a tissue-specific manor, with high expression in brain, heart, kidney, and testis, low expression in lung and liver, and no expression in spleen and skeletal muscle. Rab40c is highly expressed in differentiated oligodendrocytes but minimally expressed in oligodendrocyte progenitors, suggesting a role in the vesicular transport of myelin components. Unlike most other Ras-superfamily proteins, Rab40c was shown to have a much lower affinity for GTP, and an affinity for GDP that is lower than for GTP. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins.


Pssm-ID: 133321 [Multi-domain]  Cd Length: 189  Bit Score: 89.61  E-value: 8.28e-22
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  66 YKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIKDWKRKVENECNEIPTV 145
Cdd:cd04121  35 YGYNMGIDYKTTTILLDGRRVKLQLWDTSGQGRFCTIFRSYSRGAQGIILVYDITNRWSFDGIDRWIKEIDEHAPGVPKI 114
                        90       100       110       120
                ....*....|....*....|....*....|....*....|....*....
gi 21357169 146 IVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLA 194
Cdd:cd04121 115 LVGNRLHLAFKRQVATEQAQAYAERNGMTFFEVSPLCNFNITESFTELA 163
Rab27A cd04127
Rab GTPase family 27a (Rab27a); The Rab27a subfamily consists of Rab27a and its highly ...
50-186 1.93e-21

Rab GTPase family 27a (Rab27a); The Rab27a subfamily consists of Rab27a and its highly homologous isoform, Rab27b. Unlike most Rab proteins whose functions remain poorly defined, Rab27a has many known functions. Rab27a has multiple effector proteins, and depending on which effector it binds, Rab27a has different functions as well as tissue distribution and/or cellular localization. Putative functions have been assigned to Rab27a when associated with the effector proteins Slp1, Slp2, Slp3, Slp4, Slp5, DmSlp, rabphilin, Dm/Ce-rabphilin, Slac2-a, Slac2-b, Slac2-c, Noc2, JFC1, and Munc13-4. Rab27a has been associated with several human diseases, including hemophagocytic syndrome (Griscelli syndrome or GS), Hermansky-Pudlak syndrome, and choroidermia. In the case of GS, a rare, autosomal recessive disease, a Rab27a mutation is directly responsible for the disorder. When Rab27a is localized to the secretory granules of pancreatic beta cells, it is believed to mediate glucose-stimulated insulin secretion, making it a potential target for diabetes therapy. When bound to JFC1 in prostate cells, Rab27a is believed to regulate the exocytosis of prostate- specific markers. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206700 [Multi-domain]  Cd Length: 180  Bit Score: 88.33  E-value: 1.93e-21
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGED----------VRIMLWDTAGQEEFDCITKAYYRGAQASVLVFST 119
Cdd:cd04127  17 KTTFLYRYTDNKFNPKFITTVGIDFREKRVVYNSQGpdgtsgkafrVHLQLWDTAGQERFRSLTTAFFRDAMGFLLMFDL 96
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 21357169 120 TDRASFDAIKDW--KRKVENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINV 186
Cdd:cd04127  97 TSEQSFLNVRNWmsQLQAHAYCENPDIVLIGNKADLPDQREVSERQARELADKYGIPYFETSAATGQNV 165
Ras_like_GTPase cd00882
Rat sarcoma (Ras)-like superfamily of small guanosine triphosphatases (GTPases); Ras-like ...
48-195 2.15e-21

Rat sarcoma (Ras)-like superfamily of small guanosine triphosphatases (GTPases); Ras-like GTPase superfamily. The Ras-like superfamily of small GTPases consists of several families with an extremely high degree of structural and functional similarity. The Ras superfamily is divided into at least four families in eukaryotes: the Ras, Rho, Rab, and Sar1/Arf families. This superfamily also includes proteins like the GTP translation factors, Era-like GTPases, and G-alpha chain of the heterotrimeric G proteins. Members of the Ras superfamily regulate a wide variety of cellular functions: the Ras family regulates gene expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates nucleocytoplasmic transport and microtubule organization. The GTP translation factor family regulates initiation, elongation, termination, and release in translation, and the Era-like GTPase family regulates cell division, sporulation, and DNA replication. Members of the Ras superfamily are identified by the GTP binding site, which is made up of five characteristic sequence motifs, and the switch I and switch II regions.


Pssm-ID: 206648 [Multi-domain]  Cd Length: 161  Bit Score: 87.90  E-value: 2.15e-21
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  48 VGKSSMIQRYCKGIFTK---DYKKTIGVDFLERQIEIDGEDVRImlWDTAGQEEFDC-----ITKAYYRGAQASVLVFST 119
Cdd:cd00882   8 VGKSSLLNALLGGEVGEvsdVPGTTRDPDVYVKELDKGKVKLVL--VDTPGLDEFGGlgreeLARLLLRGADLILLVVDS 85
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 21357169 120 TDRASFDAIKDwKRKVENECNEIPTVIVQNKIDLIEQAVVTADEV-ETLAKLLNCRLIRTSVKEDINVASVFRYLAT 195
Cdd:cd00882  86 TDRESEEDAKL-LILRRLRKEGIPIILVGNKIDLLEEREVEELLRlEELAKILGVPVFEVSAKTGEGVDELFEKLIE 161
PTZ00099 PTZ00099
rab6; Provisional
62-200 2.58e-21

rab6; Provisional


Pssm-ID: 185444 [Multi-domain]  Cd Length: 176  Bit Score: 87.88  E-value: 2.58e-21
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169   62 FTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIKDWKRKVENE-CN 140
Cdd:PTZ00099   5 FDNNYQSTIGIDFLSKTLYLDEGPVRLQLWDTAGQERFRSLIPSYIRDSAAAIVVYDITNRQSFENTTKWIQDILNErGK 84
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  141 EIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKCHQL 200
Cdd:PTZ00099  85 DVIIALVGNKTDLGDLRKVTYEEGMQKAQEYNTMFHETSAKAGHNIKVLFKKIAAKLPNL 144
RAN smart00176
Ran (Ras-related nuclear proteins) /TC4 subfamily of small GTPases; Ran is involved in the ...
50-196 3.46e-21

Ran (Ras-related nuclear proteins) /TC4 subfamily of small GTPases; Ran is involved in the active transport of proteins through nuclear pores.


Pssm-ID: 128473 [Multi-domain]  Cd Length: 200  Bit Score: 88.14  E-value: 3.46e-21
                           10        20        30        40        50        60        70        80
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169     50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:smart00176   8 KTTFVKRHLTGEFEKKYVATLGVEVHPLVFHTNRGPIRFNVWDTAGQEKFGGLRDGYYIQGQCAIIMFDVTARVTYKNVP 87
                           90       100       110       120       130       140
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 21357169    130 DWKRKVENECNEIPTVIVQNKIDlIEQAVVTADEVeTLAKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:smart00176  88 NWHRDLVRVCENIPIVLCGNKVD-VKDRKVKAKSI-TFHRKKNLQYYDISAKSNYNFEKPFLWLARK 152
small_GTP TIGR00231
small GTP-binding protein domain; Proteins with a small GTP-binding domain recognized by this ...
50-193 4.95e-21

small GTP-binding protein domain; Proteins with a small GTP-binding domain recognized by this model include Ras, RhoA, Rab11, translation elongation factor G, translation initiation factor IF-2, tetratcycline resistance protein TetM, CDC42, Era, ADP-ribosylation factors, tdhF, and many others. In some proteins the domain occurs more than once.This model recognizes a large number of small GTP-binding proteins and related domains in larger proteins. Note that the alpha chains of heterotrimeric G proteins are larger proteins in which the NKXD motif is separated from the GxxxxGK[ST] motif (P-loop) by a long insert and are not easily detected by this model. [Unknown function, General]


Pssm-ID: 272973 [Multi-domain]  Cd Length: 162  Bit Score: 86.66  E-value: 4.95e-21
                          10        20        30        40        50        60        70        80
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169    50 KSSMIQRYCKG-IFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRA-SFDA 127
Cdd:TIGR00231  14 KSTLLNSLLGNkGSITEYYPGTTRNYVTTVIEEDGKTYKFNLLDTAGQEDYDAIRRLYYPQVERSLRVFDIVILVlDVEE 93
                          90       100       110       120       130       140
                  ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 21357169   128 IK-DWKRKVENEC-NEIPTVIVQNKIDLIeQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYL 193
Cdd:TIGR00231  94 ILeKQTKEIIHHAdSGVPIILVGNKIDLK-DADLKTHVASEFAKLNGEPIIPLSAETGKNIDSAFKIV 160
Rab24 cd04118
Rab GTPase family 24 (Rab24); Rab24 is distinct from other Rabs in several ways. It exists ...
50-194 5.24e-21

Rab GTPase family 24 (Rab24); Rab24 is distinct from other Rabs in several ways. It exists primarily in the GTP-bound state, having a low intrinsic GTPase activity; it is not efficiently geranyl-geranylated at the C-terminus; it does not form a detectable complex with Rab GDP-dissociation inhibitors (GDIs); and it has recently been shown to undergo tyrosine phosphorylation when overexpressed in vitro. The specific function of Rab24 still remains unknown. It is found in a transport route between ER-cis-Golgi and late endocytic compartments. It is putatively involved in an autophagic pathway, possibly directing misfolded proteins in the ER to degradative pathways. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins.


Pssm-ID: 133318 [Multi-domain]  Cd Length: 193  Bit Score: 87.61  E-value: 5.24e-21
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIF-TKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAI 128
Cdd:cd04118  13 KTSLVERYVHHRFlVGPYQNTIGAAFVAKRMVVGERVVTLGIWDTAGSERYEAMSRIYYRGAKAAIVCYDLTDSSSFERA 92
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 129 KDWKRKVENECNEIPTVIVQNKIDLIEQAV----VTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLA 194
Cdd:cd04118  93 KFWVKELQNLEEHCKIYLCGTKSDLIEQDRslrqVDFHDVQDFADEIKAQHFETSSKTGQNVDELFQKVA 162
Ras2 cd04144
Rat sarcoma (Ras) family 2 of small guanosine triphosphatases (GTPases); The Ras2 subfamily, ...
50-199 2.38e-20

Rat sarcoma (Ras) family 2 of small guanosine triphosphatases (GTPases); The Ras2 subfamily, found exclusively in fungi, was first identified in Ustilago maydis. In U. maydis, Ras2 is regulated by Sql2, a protein that is homologous to GEFs (guanine nucleotide exchange factors) of the CDC25 family. Ras2 has been shown to induce filamentous growth, but the signaling cascade through which Ras2 and Sql2 regulate cell morphology is not known. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins.


Pssm-ID: 133344 [Multi-domain]  Cd Length: 190  Bit Score: 85.67  E-value: 2.38e-20
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04144  12 KTALTIQLCLNHFVETYDPTIE-DSYRKQVVVDGQPCMLEVLDTAGQEEYTALRDQWIREGEGFILVYSITSRSTFERVE 90
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 21357169 130 DWKRKV----ENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKCHQ 199
Cdd:cd04144  91 RFREQIqrvkDESAADVPIMIVGNKCDKVYEREVSTEEGAALARRLGCEFIEASAKTNVNVERAFYTLVRALRQ 164
Rap_like cd04136
Rap-like family consists of Rap1, Rap2 and RSR1; The Rap subfamily consists of the Rap1, Rap2, ...
50-190 2.89e-20

Rap-like family consists of Rap1, Rap2 and RSR1; The Rap subfamily consists of the Rap1, Rap2, and RSR1. Rap subfamily proteins perform different cellular functions, depending on the isoform and its subcellular localization. For example, in rat salivary gland, neutrophils, and platelets, Rap1 localizes to secretory granules and is believed to regulate exocytosis or the formation of secretory granules. Rap1 has also been shown to localize in the Golgi of rat fibroblasts, zymogen granules, plasma membrane, and microsomal membrane of the pancreatic acini, as well as in the endocytic compartment of skeletal muscle cells and fibroblasts. Rap1 localizes in the nucleus of human oropharyngeal squamous cell carcinomas (SCCs) and cell lines. Rap1 plays a role in phagocytosis by controlling the binding of adhesion receptors (typically integrins) to their ligands. In yeast, Rap1 has been implicated in multiple functions, including activation and silencing of transcription and maintenance of telomeres. Rap2 is involved in multiple functions, including activation of c-Jun N-terminal kinase (JNK) to regulate the actin cytoskeleton and activation of the Wnt/beta-catenin signaling pathway in embryonic Xenopus. A number of effector proteins for Rap2 have been identified, including isoform 3 of the human mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) and Traf2- and Nck-interacting kinase (TNIK), and the RalGEFs RalGDS, RGL, and Rlf, which also interact with Rap1 and Ras. RSR1 is the fungal homolog of Rap1 and Rap2. In budding yeasts, it is involved in selecting a site for bud growth, which directs the establishment of cell polarization. The Rho family GTPase Cdc42 and its GEF, Cdc24, then establish an axis of polarized growth. It is believed that Cdc42 interacts directly with RSR1 in vivo. In filamentous fungi such as Ashbya gossypii, RSR1 is a key regulator of polar growth in the hypha. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206708 [Multi-domain]  Cd Length: 164  Bit Score: 84.92  E-value: 2.89e-20
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04136  14 KSALTVQFVQGIFVDKYDPTIE-DSYRKQIEVDCQQCMLEILDTAGTEQFTAMRDLYIKNGQGFALVYSITAQQSFNDLQ 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 21357169 130 DWKRKV--ENECNEIPTVIVQNKIDLIEQAVVTADEVETLA-KLLNCRLIRTSVKEDINVASVF 190
Cdd:cd04136  93 DLREQIlrVKDTEDVPMILVGNKCDLEDERVVSKEEGQNLArQWGNCPFLETSAKSKINVDEIF 156
Rap2 cd04176
Rap2 family GTPase consists of Rap2a, Rap2b, and Rap2c; The Rap2 subgroup is part of the Rap ...
50-190 3.20e-20

Rap2 family GTPase consists of Rap2a, Rap2b, and Rap2c; The Rap2 subgroup is part of the Rap subfamily of the Ras family. It consists of Rap2a, Rap2b, and Rap2c. Both isoform 3 of the human mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) and Traf2- and Nck-interacting kinase (TNIK) are putative effectors of Rap2 in mediating the activation of c-Jun N-terminal kinase (JNK) to regulate the actin cytoskeleton. In human platelets, Rap2 was shown to interact with the cytoskeleton by binding the actin filaments. In embryonic Xenopus development, Rap2 is necessary for the Wnt/beta-catenin signaling pathway. The Rap2 interacting protein 9 (RPIP9) is highly expressed in human breast carcinomas and correlates with a poor prognosis, suggesting a role for Rap2 in breast cancer oncogenesis. Rap2b, but not Rap2a, Rap2c, Rap1a, or Rap1b, is expressed in human red blood cells, where it is believed to be involved in vesiculation. A number of additional effector proteins for Rap2 have been identified, including the RalGEFs RalGDS, RGL, and Rlf, which also interact with Rap1 and Ras. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 133376 [Multi-domain]  Cd Length: 163  Bit Score: 84.89  E-value: 3.20e-20
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04176  14 KSALTVQFVSGTFIEKYDPTIE-DFYRKEIEVDSSPSVLEILDTAGTEQFASMRDLYIKNGQGFIVVYSLVNQQTFQDIK 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 21357169 130 DWKRKVE--NECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVF 190
Cdd:cd04176  93 PMRDQIVrvKGYEKVPIILVGNKVDLESEREVSSAEGRALAEEWGCPFMETSAKSKTMVNELF 155
RalA_RalB cd04139
Ral (Ras-like) family containing highly homologous RalA and RalB; The Ral (Ras-like) subfamily ...
62-194 3.89e-20

Ral (Ras-like) family containing highly homologous RalA and RalB; The Ral (Ras-like) subfamily consists of the highly homologous RalA and RalB. Ral proteins are believed to play a crucial role in tumorigenesis, metastasis, endocytosis, and actin cytoskeleton dynamics. Despite their high sequence similarity (>80% sequence identity), nonoverlapping and opposing functions have been assigned to RalA and RalBs in tumor migration. In human bladder and prostate cancer cells, RalB promotes migration while RalA inhibits it. A Ral-specific set of GEFs has been identified that are activated by Ras binding. This RalGEF activity is enhanced by Ras binding to another of its target proteins, phosphatidylinositol 3-kinase (PI3K). Ral effectors include RLIP76/RalBP1, a Rac/cdc42 GAP, and the exocyst (Sec6/8) complex, a heterooctomeric protein complex that is involved in tethering vesicles to specific sites on the plasma membrane prior to exocytosis. In rat kidney cells, RalB is required for functional assembly of the exocyst and for localizing the exocyst to the leading edge of migrating cells. In human cancer cells, RalA is required to support anchorage-independent proliferation and RalB is required to suppress apoptosis. RalA has been shown to localize to the plasma membrane while RalB is localized to the intracellular vesicles. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206710 [Multi-domain]  Cd Length: 163  Bit Score: 84.40  E-value: 3.89e-20
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  62 FTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIKD----WKRKVEN 137
Cdd:cd04139  25 FVEDYEPTKA-DSYRKKVVLDGEEVQLNILDTAGQEDYAAIRDNYFRSGEGFLLVFSITDMESFTALAEfreqILRVKED 103
                        90       100       110       120       130
                ....*....|....*....|....*....|....*....|....*....|....*..
gi 21357169 138 EcnEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLA 194
Cdd:cd04139 104 D--NVPLLLVGNKCDLEDKRQVSVEEAANLAEQWGVNYVETSAKTRANVDKVFFDLV 158
RabL4 cd04101
Rab GTPase-like family 4 (Rab-like4); RabL4 (Rab-like4) subfamily. RabL4s are novel proteins ...
50-198 1.23e-19

Rab GTPase-like family 4 (Rab-like4); RabL4 (Rab-like4) subfamily. RabL4s are novel proteins that have high sequence similarity with Rab family members, but display features that are distinct from Rabs, and have been termed Rab-like. As in other Rab-like proteins, RabL4 lacks a prenylation site at the C-terminus. The specific function of RabL4 remains unknown.


Pssm-ID: 206688 [Multi-domain]  Cd Length: 167  Bit Score: 83.35  E-value: 1.23e-19
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCK--GIFTKDYKKTIGVDFLERQIEIDGED--VRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASF 125
Cdd:cd04101  13 KSALVQMFHSdgATFQKNYTMTTGCDLVVKTVPVPDTSdsVELFIFDSAGQELFSDMVENVWEQPAVVCVVYDVTNEVSF 92
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 21357169 126 DAIKDWKRKVE--NECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLATKCH 198
Cdd:cd04101  93 NNCSRWINRVRthSHGLHTPGVLVGNKCDLTDRREVDAAQAQALAQANTLKFYETSAKEGVGYEAPFLSLARAFH 167
PLN03071 PLN03071
GTP-binding nuclear protein Ran; Provisional
50-196 1.54e-19

GTP-binding nuclear protein Ran; Provisional


Pssm-ID: 178620 [Multi-domain]  Cd Length: 219  Bit Score: 84.42  E-value: 1.54e-19
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169   50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:PLN03071  26 KTTFVKRHLTGEFEKKYEPTIGVEVHPLDFFTNCGKIRFYCWDTAGQEKFGGLRDGYYIHGQCAIIMFDVTARLTYKNVP 105
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 21357169  130 DWKRKVENECNEIPTVIVQNKIDLIEQAvVTADEVeTLAKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:PLN03071 106 TWHRDLCRVCENIPIVLCGNKVDVKNRQ-VKAKQV-TFHRKKNLQYYEISAKSNYNFEKPFLYLARK 170
Ras_dva cd04147
Ras - dorsal-ventral anterior localization (Ras-dva) family; Ras-dva subfamily. Ras-dva (Ras - ...
50-193 1.89e-19

Ras - dorsal-ventral anterior localization (Ras-dva) family; Ras-dva subfamily. Ras-dva (Ras - dorsal-ventral anterior localization) subfamily consists of a set of proteins characterized only in Xenopus leavis, to date. In Xenopus Ras-dva expression is activated by the transcription factor Otx2 and begins during gastrulation throughout the anterior ectoderm. Ras-dva expression is inhibited in the anterior neural plate by factor Xanf1. Downregulation of Ras-dva results in head development abnormalities through the inhibition of several regulators of the anterior neural plate and folds patterning, including Otx2, BF-1, Xag2, Pax6, Slug, and Sox9. Downregulation of Ras-dva also interferes with the FGF-8a signaling within the anterior ectoderm. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins.


Pssm-ID: 206714 [Multi-domain]  Cd Length: 197  Bit Score: 83.73  E-value: 1.89e-19
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04147  12 KTALIQRFLYDTFEPKHRRTVE-ELHSKEYEVAGVKVTIDILDTSGSYSFPAMRKLSIQNGDAFALVYSVDDPESFEEVK 90
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 21357169 130 DWKRKV--ENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKL-LNCRLIRTSVKEDINVASVFRYL 193
Cdd:cd04147  91 RLREEIleVKEDKFVPIVVVGNKIDSLAERQVEAADALSTVELdWNNGFVEASAKDNENVTEVFKEL 157
H_N_K_Ras_like cd04138
Ras GTPase family containing H-Ras,N-Ras and K-Ras4A/4B; H-Ras/N-Ras/K-Ras subfamily. H-Ras, ...
50-194 3.68e-19

Ras GTPase family containing H-Ras,N-Ras and K-Ras4A/4B; H-Ras/N-Ras/K-Ras subfamily. H-Ras, N-Ras, and K-Ras4A/4B are the prototypical members of the Ras family. These isoforms generate distinct signal outputs despite interacting with a common set of activators and effectors, and are strongly associated with oncogenic progression in tumor initiation. Mutated versions of Ras that are insensitive to GAP stimulation (and are therefore constitutively active) are found in a significant fraction of human cancers. Many Ras guanine nucleotide exchange factors (GEFs) have been identified. They are sequestered in the cytosol until activation by growth factors triggers recruitment to the plasma membrane or Golgi, where the GEF colocalizes with Ras. Active (GTP-bound) Ras interacts with several effector proteins that stimulate a variety of diverse cytoplasmic signaling activities. Some are known to positively mediate the oncogenic properties of Ras, including Raf, phosphatidylinositol 3-kinase (PI3K), RalGEFs, and Tiam1. Others are proposed to play negative regulatory roles in oncogenesis, including RASSF and NORE/MST1. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 133338 [Multi-domain]  Cd Length: 162  Bit Score: 81.70  E-value: 3.68e-19
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04138  14 KSALTIQLIQNHFVDEYDPTIE-DSYRKQVVIDGETCLLDILDTAGQEEYSAMRDQYMRTGEGFLCVFAINSRKSFEDIH 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 21357169 130 DWKRKVE--NECNEIPTVIVQNKIDLiEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLA 194
Cdd:cd04138  93 TYREQIKrvKDSDDVPMVLVGNKCDL-AARTVSTRQGQDLAKSYGIPYIETSAKTRQGVEEAFYTLV 158
Rit_Rin_Ric cd04141
Ras-like protein in all tissues (Rit), Ras-like protein in neurons (Rin) and Ras-related ...
50-194 4.44e-19

Ras-like protein in all tissues (Rit), Ras-like protein in neurons (Rin) and Ras-related protein which interacts with calmodulin (Ric); Rit (Ras-like protein in all tissues), Rin (Ras-like protein in neurons) and Ric (Ras-related protein which interacts with calmodulin) form a subfamily with several unique structural and functional characteristics. These proteins all lack a the C-terminal CaaX lipid-binding motif typical of Ras family proteins, and Rin and Ric contain calmodulin-binding domains. Rin, which is expressed only in neurons, induces neurite outgrowth in rat pheochromocytoma cells through its association with calmodulin and its activation of endogenous Rac/cdc42. Rit, which is ubiquitously expressed in mammals, inhibits growth-factor withdrawl-mediated apoptosis and induces neurite extension in pheochromocytoma cells. Rit and Rin are both able to form a ternary complex with PAR6, a cell polarity-regulating protein, and Rac/cdc42. This ternary complex is proposed to have physiological function in processes such as tumorigenesis. Activated Ric is likely to signal in parallel with the Ras pathway or stimulate the Ras pathway at some upstream point, and binding of calmodulin to Ric may negatively regulate Ric activity.


Pssm-ID: 206712 [Multi-domain]  Cd Length: 172  Bit Score: 81.82  E-value: 4.44e-19
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04141  15 KSAVTMQFISHSFPDYHDPTIE-DAYKTQARIDNEPALLDILDTAGQAEFTAMRDQYMRCGEGFIICYSVTDRHSFQEAS 93
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 21357169 130 DWKRKVEN--ECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLA 194
Cdd:cd04141  94 EFKELITRvrLTEDIPLVLVGNKVDLEQQRQVTTEEGRNLAREFNCPFFETSAALRFYIDDAFHGLV 160
RERG_RasL11_like cd04146
Ras-related and Estrogen-Regulated Growth inhibitor (RERG) and Ras-like 11 (RasL11)-like ...
50-193 6.10e-19

Ras-related and Estrogen-Regulated Growth inhibitor (RERG) and Ras-like 11 (RasL11)-like families; RERG (Ras-related and Estrogen- Regulated Growth inhibitor) and Ras-like 11 are members of a novel subfamily of Ras that were identified based on their behavior in breast and prostate tumors, respectively. RERG expression was decreased or lost in a significant fraction of primary human breast tumors that lack estrogen receptor and are correlated with poor clinical prognosis. Elevated RERG expression correlated with favorable patient outcome in a breast tumor subtype that is positive for estrogen receptor expression. In contrast to most Ras proteins, RERG overexpression inhibited the growth of breast tumor cells in vitro and in vivo. RasL11 was found to be ubiquitously expressed in human tissue, but down-regulated in prostate tumors. Both RERG and RasL11 lack the C-terminal CaaX prenylation motif, where a = an aliphatic amino acid and X = any amino acid, and are localized primarily in the cytoplasm. Both are believed to have tumor suppressor activity.


Pssm-ID: 206713 [Multi-domain]  Cd Length: 166  Bit Score: 81.17  E-value: 6.10e-19
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDC--ITKAYYRGAQASVLVFSTTDRASFDA 127
Cdd:cd04146  12 KSALTVRFLTKRFIGEYEPNLE-SLYSRQVTIDGEQVSLEIQDTPGQQQNEDpeSLERSLRWADGFVLVYSITDRSSFDV 90
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 128 IKDWK---RKVENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDIN-VASVFRYL 193
Cdd:cd04146  91 VSQLLqliREIKKRDGEIPVILVGNKADLLHSRQVSTEEGQKLALELGCLFFEVSAAENYLeVQNVFHEL 160
RGK cd04148
Rem, Rem2, Rad, Gem/Kir (RGK) subfamily of Ras GTPases; RGK subfamily. The RGK (Rem, Rem2, Rad, ...
50-191 1.95e-18

Rem, Rem2, Rad, Gem/Kir (RGK) subfamily of Ras GTPases; RGK subfamily. The RGK (Rem, Rem2, Rad, Gem/Kir) subfamily of Ras GTPases are expressed in a tissue-specific manner and are dynamically regulated by transcriptional and posttranscriptional mechanisms in response to environmental cues. RGK proteins bind to the beta subunit of L-type calcium channels, causing functional down-regulation of these voltage-dependent calcium channels, and either termination of calcium-dependent secretion or modulation of electrical conduction and contractile function. Inhibition of L-type calcium channels by Rem2 may provide a mechanism for modulating calcium-triggered exocytosis in hormone-secreting cells, and has been proposed to influence the secretion of insulin in pancreatic beta cells. RGK proteins also interact with and inhibit the Rho/Rho kinase pathway to modulate remodeling of the cytoskeleton. Two characteristics of RGK proteins cited in the literature are N-terminal and C-terminal extensions beyond the GTPase domain typical of Ras superfamily members. The N-terminal extension is not conserved among family members; the C-terminal extension is reported to be conserved among the family and lack the CaaX prenylation motif typical of membrane-associated Ras proteins. However, a putative CaaX motif has been identified in the alignment of the C-terminal residues of this CD.


Pssm-ID: 206715 [Multi-domain]  Cd Length: 219  Bit Score: 81.30  E-value: 1.95e-18
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04148  13 KSSLANIFTAGVYEDSAYEASGDDTYERTVSVDGEEATLVVYDHWEQEDGMWLEDSCMQVGDAYVIVYSVTDRSSFEKAS 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....
gi 21357169 130 DWKR--KVENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFR 191
Cdd:cd04148  93 ELRIqlRRARQAEDIPIILVGNKSDLVRSREVSVQEGRACAVVFDCKFIETSAALQHNVDELFE 156
PTZ00132 PTZ00132
GTP-binding nuclear protein Ran; Provisional
50-158 2.14e-18

GTP-binding nuclear protein Ran; Provisional


Pssm-ID: 240284 [Multi-domain]  Cd Length: 215  Bit Score: 81.28  E-value: 2.14e-18
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169   50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:PTZ00132  22 KTTFVKRHLTGEFEKKYIPTLGVEVHPLKFYTNCGPICFNVWDTAGQEKFGGLRDGYYIKGQCAIIMFDVTSRITYKNVP 101
                         90       100
                 ....*....|....*....|....*....
gi 21357169  130 DWKRKVENECNEIPTVIVQNKIDLIEQAV 158
Cdd:PTZ00132 102 NWHRDIVRVCENIPIVLVGNKVDVKDRQV 130
RabL2 cd04124
Rab GTPase-like family 2 (Rab-like2); RabL2 (Rab-like2) subfamily. RabL2s are novel Rab ...
50-191 2.89e-18

Rab GTPase-like family 2 (Rab-like2); RabL2 (Rab-like2) subfamily. RabL2s are novel Rab proteins identified recently which display features that are distinct from other Rabs, and have been termed Rab-like. RabL2 contains RabL2a and RabL2b, two very similar Rab proteins that share > 98% sequence identity in humans. RabL2b maps to the subtelomeric region of chromosome 22q13.3 and RabL2a maps to 2q13, a region that suggests it is also a subtelomeric gene. Both genes are believed to be expressed ubiquitously, suggesting that RabL2s are the first example of duplicated genes in human proximal subtelomeric regions that are both expressed actively. Like other Rab-like proteins, RabL2s lack a prenylation site at the C-terminus. The specific functions of RabL2a and RabL2b remain unknown. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization.


Pssm-ID: 133324 [Multi-domain]  Cd Length: 161  Bit Score: 79.52  E-value: 2.89e-18
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04124  13 KSKLVERFLMDGYEPQQLSTYALTLYKHNAKFEGKTILVDFWDTAGQERFQTMHASYYHKAHACILVFDVTRKITYKNLS 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|..
gi 21357169 130 DWKRKVENECNEIPTVIVQNKIDLIEQAVVTAdevETLAKLLNCRLIRTSVKEDINVASVFR 191
Cdd:cd04124  93 KWYEELREYRPEIPCIVVANKIDLDPSVTQKK---FNFAEKHNLPLYYVSAADGTNVVKLFQ 151
PTZ00369 PTZ00369
Ras-like protein; Provisional
50-190 3.11e-18

Ras-like protein; Provisional


Pssm-ID: 240385 [Multi-domain]  Cd Length: 189  Bit Score: 79.91  E-value: 3.11e-18
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169   50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:PTZ00369  18 KSALTIQFIQNHFIDEYDPTIE-DSYRKQCVIDEETCLLDILDTAGQEEYSAMRDQYMRTGQGFLCVYSITSRSSFEEIA 96
                         90       100       110       120       130       140
                 ....*....|....*....|....*....|....*....|....*....|....*....|...
gi 21357169  130 DWKRKV--ENECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVF 190
Cdd:PTZ00369  97 SFREQIlrVKDKDRVPMILVGNKCDLDSERQVSTGEGQELAKSFGIPFLETSAKQRVNVDEAF 159
Spg1 cd04128
Septum-promoting GTPase (Spg1); Spg1p. Spg1p (septum-promoting GTPase) was first identified in ...
50-196 3.29e-18

Septum-promoting GTPase (Spg1); Spg1p. Spg1p (septum-promoting GTPase) was first identified in the fission yeast S. pombe, where it regulates septum formation in the septation initiation network (SIN) through the cdc7 protein kinase. Spg1p is an essential gene that localizes to the spindle pole bodies. When GTP-bound, it binds cdc7 and causes it to translocate to spindle poles. Sid4p (septation initiation defective) is required for localization of Spg1p to the spindle pole body, and the ability of Spg1p to promote septum formation from any point in the cell cycle depends on Sid4p. Spg1p is negatively regulated by Byr4 and cdc16, which form a two-component GTPase activating protein (GAP) for Spg1p. The existence of a SIN-related pathway in plants has been proposed. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization.


Pssm-ID: 206701 [Multi-domain]  Cd Length: 182  Bit Score: 79.75  E-value: 3.29e-18
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04128  13 KTSLMVKYVEGEFDEEYIQTLGVNFMEKTISIRGTEITFSIWDLGGQREFINMLPLVCKDAVAILFMFDLTRKSTLNSIK 92
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 21357169 130 DWKRKVENECNEIPTVIVQNKIDLI------EQAVVTAdEVETLAKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:cd04128  93 EWYRQARGFNKTAIPILVGTKYDLFadlppeEQEEITK-QARKYAKAMKAPLIFCSTSHSINVQKIFKFVLAK 164
RSR1 cd04177
RSR1/Bud1p family GTPase; RSR1/Bud1p is a member of the Rap subfamily of the Ras family that ...
50-201 1.95e-17

RSR1/Bud1p family GTPase; RSR1/Bud1p is a member of the Rap subfamily of the Ras family that is found in fungi. In budding yeasts, RSR1 is involved in selecting a site for bud growth on the cell cortex, which directs the establishment of cell polarization. The Rho family GTPase cdc42 and its GEF, cdc24, then establish an axis of polarized growth by organizing the actin cytoskeleton and secretory apparatus at the bud site. It is believed that cdc42 interacts directly with RSR1 in vivo. In filamentous fungi, polar growth occurs at the tips of hypha and at novel growth sites along the extending hypha. In Ashbya gossypii, RSR1 is a key regulator of hyphal growth, localizing at the tip region and regulating in apical polarization of the actin cytoskeleton. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins.


Pssm-ID: 133377 [Multi-domain]  Cd Length: 168  Bit Score: 77.52  E-value: 1.95e-17
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04177  14 KSALTVQFVQNVFIESYDPTIE-DSYRKQVEIDGRQCDLEILDTAGTEQFTAMRELYIKSGQGFLLVYSVTSEASLNELG 92
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 21357169 130 DWKRKVE--NECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLN-CRLIRTSVKEDINVASVFRYLatkCHQLM 201
Cdd:cd04177  93 ELREQVLriKDSDNVPMVLVGNKADLEDDRQVSREDGVSLSQQWGnVPFYETSARKRTNVDEVFIDL---VRQII 164
Rop_like cd04133
Rho-related protein from plants (Rop)-like; The Rop (Rho-related protein from plants) ...
50-190 2.45e-15

Rho-related protein from plants (Rop)-like; The Rop (Rho-related protein from plants) subfamily plays a role in diverse cellular processes, including cytoskeletal organization, pollen and vegetative cell growth, hormone responses, stress responses, and pathogen resistance. Rops are able to regulate several downstream pathways to amplify a specific signal by acting as master switches early in the signaling cascade. They transmit a variety of extracellular and intracellular signals. Rops are involved in establishing cell polarity in root-hair development, root-hair elongation, pollen-tube growth, cell-shape formation, responses to hormones such as abscisic acid (ABA) and auxin, responses to abiotic stresses such as oxygen deprivation, and disease resistance and disease susceptibility. An individual Rop can have a unique function or an overlapping function shared with other Rop proteins; in addition, a given Rop-regulated function can be controlled by one or multiple Rop proteins. For example, Rop1, Rop3, and Rop5 are all involved in pollen-tube growth; Rop2 plays a role in response to low-oxygen environments, cell-morphology, and root-hair development; root-hair development is also regulated by Rop4 and Rop6; Rop6 is also responsible for ABA response, and ABA response is also regulated by Rop10. Plants retain some of the regulatory mechanisms that are shared by other members of the Rho family, but have also developed a number of unique modes for regulating Rops. Unique RhoGEFs have been identified that are exclusively active toward Rop proteins, such as those containing the domain PRONE (plant-specific Rop nucleotide exchanger). Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206705 [Multi-domain]  Cd Length: 173  Bit Score: 71.80  E-value: 2.45e-15
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIgVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFD-AI 128
Cdd:cd04133  14 KTCMLISYTSNTFPTDYVPTV-FDNFSANVVVDGNTVNLGLWDTAGQEDYNRLRPLSYRGADVFLLAFSLISKASYEnVL 92
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 21357169 129 KDWKRKVENECNEIPTVIVQNKIDLIEQ-----------AVVTADEVETLAKLLNCRLIRTSVKEDINVASVF 190
Cdd:cd04133  93 KKWIPELRHYAPGVPIVLVGTKLDLRDDkqffadhpgavPITTAQGEELRKQIGAAAYIECSSKTQQNVKAVF 165
Wrch_1 cd04130
Wnt-1 responsive Cdc42 homolog (Wrch-1) is a Rho family GTPase similar to Cdc42; Wrch-1 (Wnt-1 ...
50-159 1.87e-14

Wnt-1 responsive Cdc42 homolog (Wrch-1) is a Rho family GTPase similar to Cdc42; Wrch-1 (Wnt-1 responsive Cdc42 homolog) is a Rho family GTPase that shares significant sequence and functional similarity with Cdc42. Wrch-1 was first identified in mouse mammary epithelial cells, where its transcription is upregulated in Wnt-1 transformation. Wrch-1 contains N- and C-terminal extensions relative to cdc42, suggesting potential differences in cellular localization and function. The Wrch-1 N-terminal extension contains putative SH3 domain-binding motifs and has been shown to bind the SH3 domain-containing protein Grb2, which increases the level of active Wrch-1 in cells. Unlike Cdc42, which localizes to the cytosol and perinuclear membranes, Wrch-1 localizes extensively with the plasma membrane and endosomes. The membrane association, localization, and biological activity of Wrch-1 indicate an atypical model of regulation distinct from other Rho family GTPases. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 133330 [Multi-domain]  Cd Length: 173  Bit Score: 69.35  E-value: 1.87e-14
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTiGVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04130  13 KTSLIVSYTTNGYPTEYVPT-AFDNFSVVVLVDGKPVRLQLCDTAGQDEFDKLRPLCYPDTDVFLLCFSVVNPSSFQNIS 91
                        90       100       110
                ....*....|....*....|....*....|.
gi 21357169 130 D-WKRKVENECNEIPTVIVQNKIDLIEQAVV 159
Cdd:cd04130  92 EkWIPEIRKHNPKAPIILVGTQADLRTDVNV 122
Rho3 cd04134
Ras homology family 3 (Rho3) of small guanosine triphosphatases (GTPases); Rho3 is a member of ...
50-194 1.22e-12

Ras homology family 3 (Rho3) of small guanosine triphosphatases (GTPases); Rho3 is a member of the Rho family found only in fungi. Rho3 is believed to regulate cell polarity by interacting with the diaphanous/formin family protein For3 to control both the actin cytoskeleton and microtubules. Rho3 is also believed to have a direct role in exocytosis that is independent of its role in regulating actin polarity. The function in exocytosis may be two-pronged: first, in the transport of post-Golgi vesicles from the mother cell to the bud, mediated by myosin (Myo2); second, in the docking and fusion of vesicles to the plasma membrane, mediated by an exocyst (Exo70) protein. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins.


Pssm-ID: 206706 [Multi-domain]  Cd Length: 185  Bit Score: 64.88  E-value: 1.22e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLErQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04134  13 KTSLLNVFTRGYFPQVYEPTVFENYIH-DIFVDGLAVELSLWDTAGQEEFDRLRSLSYADTHVIMLCFSVDNPDSLENVE 91
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 21357169 130 D-WKRKVENECNEIPTVIVQNKIDLIEQAVVTADEVETL--------AKLLN-CRLIRTSVKEDINVASVFRYLA 194
Cdd:cd04134  92 SkWLAEIRHHCPGVKLVLVALKCDLREPRNERDRGTHTIsyeeglavAKRINaCRYLECSAKLNRGVNEAFTEAA 166
RhoG cd01875
Ras homolog family, member G (RhoG) of small guanosine triphosphatases (GTPases); RhoG is a ...
50-208 1.23e-12

Ras homolog family, member G (RhoG) of small guanosine triphosphatases (GTPases); RhoG is a GTPase with high sequence similarity to members of the Rac subfamily, including the regions involved in effector recognition and binding. However, RhoG does not bind to known Rac1 and Cdc42 effectors, including proteins containing a Cdc42/Rac interacting binding (CRIB) motif. Instead, RhoG interacts directly with Elmo, an upstream regulator of Rac1, in a GTP-dependent manner and forms a ternary complex with Dock180 to induce activation of Rac1. The RhoG-Elmo-Dock180 pathway is required for activation of Rac1 and cell spreading mediated by integrin, as well as for neurite outgrowth induced by nerve growth factor. Thus RhoG activates Rac1 through Elmo and Dock180 to control cell morphology. RhoG has also been shown to play a role in caveolar trafficking and has a novel role in signaling the neutrophil respiratory burst stimulated by G protein-coupled receptor (GPCR) agonists. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins.


Pssm-ID: 133277 [Multi-domain]  Cd Length: 191  Bit Score: 65.03  E-value: 1.23e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIgVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd01875  16 KTCLLICYTTNAFPKEYIPTV-FDNYSAQTAVDGRTVSLNLWDTAGQEEYDRLRTLSYPQTNVFIICFSIASPSSYENVR 94
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 130 -DWKRKVENECNEIPTVIVQNKIDLIEQAvvtadevETLAKLLNCRLIRTSVKEDINVAS---VFRYLatKCHQLMTQSY 205
Cdd:cd01875  95 hKWHPEVCHHCPNVPILLVGTKKDLRNDA-------DTLKKLKEQGQAPITPQQGGALAKqihAVKYL--ECSALNQDGV 165

                ...
gi 21357169 206 DQV 208
Cdd:cd01875 166 KEV 168
Rhes_like cd04143
Ras homolog enriched in striatum (Rhes) and activator of G-protein signaling 1 (Dexras1/AGS1); ...
50-195 1.26e-12

Ras homolog enriched in striatum (Rhes) and activator of G-protein signaling 1 (Dexras1/AGS1); This subfamily includes Rhes (Ras homolog enriched in striatum) and Dexras1/AGS1 (activator of G-protein signaling 1). These proteins are homologous, but exhibit significant differences in tissue distribution and subcellular localization. Rhes is found primarily in the striatum of the brain, but is also expressed in other areas of the brain, such as the cerebral cortex, hippocampus, inferior colliculus, and cerebellum. Rhes expression is controlled by thyroid hormones. In rat PC12 cells, Rhes is farnesylated and localizes to the plasma membrane. Rhes binds and activates PI3K, and plays a role in coupling serpentine membrane receptors with heterotrimeric G-protein signaling. Rhes has recently been shown to be reduced under conditions of dopamine supersensitivity and may play a role in determining dopamine receptor sensitivity. Dexras1/AGS1 is a dexamethasone-induced Ras protein that is expressed primarily in the brain, with low expression levels in other tissues. Dexras1 localizes primarily to the cytoplasm, and is a critical regulator of the circadian master clock to photic and nonphotic input. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins.


Pssm-ID: 133343 [Multi-domain]  Cd Length: 247  Bit Score: 65.93  E-value: 1.26e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04143  13 KTAIVSRFLGGRFEEQYTPTIE-DFHRKLYSIRGEVYQLDILDTSGNHPFPAMRRLSILTGDVFILVFSLDNRESFEEVC 91
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 21357169 130 -------DWKRKVEN---ECNEIPTVIVQNKIDLIEQAVVTADEVETL-AKLLNCRLIRTSVKEDINVASVFRYLAT 195
Cdd:cd04143  92 rlreqilETKSCLKNktkENVKIPMVICGNKADRDFPREVQRDEVEQLvGGDENCAYFEVSAKKNSNLDEMFRALFS 168
Arf_Arl cd00878
ADP-ribosylation factor(Arf)/Arf-like (Arl) small GTPases; Arf (ADP-ribosylation factor)/Arl ...
50-174 1.53e-12

ADP-ribosylation factor(Arf)/Arf-like (Arl) small GTPases; Arf (ADP-ribosylation factor)/Arl (Arf-like) small GTPases. Arf proteins are activators of phospholipase D isoforms. Unlike Ras proteins they lack cysteine residues at their C-termini and therefore are unlikely to be prenylated. Arfs are N-terminally myristoylated. Members of the Arf family are regulators of vesicle formation in intracellular traffic that interact reversibly with membranes of the secretory and endocytic compartments in a GTP-dependent manner. They depart from other small GTP-binding proteins by a unique structural device, interswitch toggle, that implements front-back communication from N-terminus to the nucleotide binding site. Arf-like (Arl) proteins are close relatives of the Arf, but only Arl1 has been shown to function in membrane traffic like the Arf proteins. Arl2 has an unrelated function in the folding of native tubulin, and Arl4 may function in the nucleus. Most other Arf family proteins are so far relatively poorly characterized. Thus, despite their significant sequence homologies, Arf family proteins may regulate unrelated functions.


Pssm-ID: 206644 [Multi-domain]  Cd Length: 158  Bit Score: 63.75  E-value: 1.53e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKdYKKTIGVdflerQIE-IDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAI 128
Cdd:cd00878  12 KTTILYKLKLGEVVT-TIPTIGF-----NVEtVEYKNVKFTVWDVGGQDKIRPLWKHYYENTDGLIFVVDSSDRERIEEA 85
                        90       100       110       120
                ....*....|....*....|....*....|....*....|....*...
gi 21357169 129 KDWKRKV--ENECNEIPTVIVQNKIDLIEqaVVTADEVETLAKLLNCR 174
Cdd:cd00878  86 KNELHKLlnEEELKGAPLLILANKQDLPG--ALTESELIELLGLESIK 131
Rho4_like cd04132
Ras homology family 4 (Rho4) of small guanosine triphosphatases (GTPases)-like; Rho4 is a ...
45-197 4.03e-12

Ras homology family 4 (Rho4) of small guanosine triphosphatases (GTPases)-like; Rho4 is a GTPase that controls septum degradation by regulating secretion of Eng1 or Agn1 during cytokinesis. Rho4 also plays a role in cell morphogenesis. Rho4 regulates septation and cell morphology by controlling the actin cytoskeleton and cytoplasmic microtubules. The localization of Rho4 is modulated by Rdi1, which may function as a GDI, and by Rga9, which is believed to function as a GAP. In S. pombe, both Rho4 deletion and Rho4 overexpression result in a defective cell wall, suggesting a role for Rho4 in maintaining cell wall integrity. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins.


Pssm-ID: 206704 [Multi-domain]  Cd Length: 197  Bit Score: 63.51  E-value: 4.03e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  45 NGGVGKSSMIQRYCKGIFTKDYKKTIgvdfLERQIEI----DGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTT 120
Cdd:cd04132  11 DGGCGKTCLLMVYAQGSFPEEYVPTV----FENYVTTlqvpNGKIIELALWDTAGQEDYDRLRPLSYPDVDVILICYSVD 86
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 121 DRASFDAIKD-WKRKVENECNEIPTVIVQNKIDLIE------------QAVVTADEVETLAKLLNC-RLIRTSVKEDINV 186
Cdd:cd04132  87 NPTSLDNVEDkWYPEVNHFCPGTPIVLVGLKTDLRKdknsvsklraqgLEPVTPEQGESVAKSIGAvAYIECSAKLMENV 166
                       170
                ....*....|.
gi 21357169 187 ASVFRyLATKC 197
Cdd:cd04132 167 DEVFD-AAINV 176
ARHI_like cd04140
A Ras homolog member I (ARHI); ARHI (A Ras homolog member I) is a member of the Ras family ...
50-193 7.23e-12

A Ras homolog member I (ARHI); ARHI (A Ras homolog member I) is a member of the Ras family with several unique structural and functional properties. ARHI is expressed in normal human ovarian and breast tissue, but its expression is decreased or eliminated in breast and ovarian cancer. ARHI contains an N-terminal extension of 34 residues (human) that is required to retain its tumor suppressive activity. Unlike most other Ras family members, ARHI is maintained in the constitutively active (GTP-bound) state in resting cells and has modest GTPase activity. ARHI inhibits STAT3 (signal transducers and activators of transcription 3), a latent transcription factor whose abnormal activation plays a critical role in oncogenesis. Most Ras proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Ras proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206711 [Multi-domain]  Cd Length: 165  Bit Score: 62.15  E-value: 7.23e-12
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGvDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04140  14 KSSLVLRFVKGTFRESYIPTIE-DTYRQVISCSKSICTLQITDTTGSHQFPAMQRLSISKGHAFILVYSITSKQSLEELK 92
                        90       100       110       120       130       140
                ....*....|....*....|....*....|....*....|....*....|....*....|....*...
gi 21357169 130 DWKRKVE----NECNEIPTVIVQNKIDLIEQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYL 193
Cdd:cd04140  93 PIYELICeikgNNLEKIPIMLVGNKCDESPSREVSSSEGAALARTWNCAFMETSAKTNHNVQELFQEL 160
Rnd cd04131
Rho family GTPase subfamily Rnd includes Rnd1/Rho6, Rnd2/Rho7, and Rnd3/RhoE/Rho8; The Rnd ...
50-187 1.15e-11

Rho family GTPase subfamily Rnd includes Rnd1/Rho6, Rnd2/Rho7, and Rnd3/RhoE/Rho8; The Rnd subfamily contains Rnd1/Rho6, Rnd2/Rho7, and Rnd3/RhoE/Rho8. These novel Rho family proteins have substantial structural differences compared to other Rho members, including N- and C-terminal extensions relative to other Rhos. Rnd3/RhoE is farnesylated at the C-terminal prenylation site, unlike most other Rho proteins that are geranylgeranylated. In addition, Rnd members are unable to hydrolyze GTP and are resistant to GAP activity. They are believed to exist only in the GTP-bound conformation, and are antagonists of RhoA activity. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206703 [Multi-domain]  Cd Length: 176  Bit Score: 61.68  E-value: 1.15e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIgVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAI- 128
Cdd:cd04131  14 KTALLQVFAKDSFPENYVPTV-FENYTASFEVDKQRIELSLWDTSGSPYYDNVRPLSYPDSDAVLICFDISRPETLDSVl 92
                        90       100       110       120       130
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 21357169 129 KDWKRKVENECNEIPTVIVQNKIDLieqavvtADEVETLAKLLNCRLIRTSVKEDINVA 187
Cdd:cd04131  93 KKWKGEVREFCPNTPVLLVGCKSDL-------RTDLSTLTELSNKRQIPVSHEQGRNLA 144
RhoA_like cd01870
Ras homology family A (RhoA)-like includes RhoA, RhoB and RhoC; The RhoA subfamily consists of ...
50-190 1.18e-11

Ras homology family A (RhoA)-like includes RhoA, RhoB and RhoC; The RhoA subfamily consists of RhoA, RhoB, and RhoC. RhoA promotes the formation of stress fibers and focal adhesions, regulating cell shape, attachment, and motility. RhoA can bind to multiple effector proteins, thereby triggering different downstream responses. In many cell types, RhoA mediates local assembly of the contractile ring, which is necessary for cytokinesis. RhoA is vital for muscle contraction; in vascular smooth muscle cells, RhoA plays a key role in cell contraction, differentiation, migration, and proliferation. RhoA activities appear to be elaborately regulated in a time- and space-dependent manner to control cytoskeletal changes. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. RhoA and RhoC are observed only in geranylgeranylated forms; however, RhoB can be present in palmitoylated, farnesylated, and geranylgeranylated forms. RhoA and RhoC are highly relevant for tumor progression and invasiveness; however, RhoB has recently been suggested to be a tumor suppressor. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206662 [Multi-domain]  Cd Length: 175  Bit Score: 61.68  E-value: 1.18e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLeRQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd01870  14 KTCLLIVFSKDQFPEVYVPTVFENYV-ADIEVDGKQVELALWDTAGQEDYDRLRPLSYPDTDVILMCFSIDSPDSLENIP 92
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 21357169 130 D-WKRKVENECNEIPTVIVQNKIDL------------IEQAVVTADEVETLAKLLNC-RLIRTSVKEDINVASVF 190
Cdd:cd01870  93 EkWTPEVKHFCPNVPIILVGNKKDLrndehtirelakMKQEPVKPEEGRAMAEKIGAfGYLECSAKTKEGVREVF 167
Rab20 cd04126
Rab GTPase family 20 (Rab20); Rab20 is one of several Rab proteins that appear to be ...
50-219 4.50e-11

Rab GTPase family 20 (Rab20); Rab20 is one of several Rab proteins that appear to be restricted in expression to the apical domain of murine polarized epithelial cells. It is expressed on the apical side of polarized kidney tubule and intestinal epithelial cells, and in non-polarized cells. It also localizes to vesico-tubular structures below the apical brush border of renal proximal tubule cells and in the apical region of duodenal epithelial cells. Rab20 has also been shown to colocalize with vacuolar H+-ATPases (V-ATPases) in mouse kidney cells, suggesting a role in the regulation of V-ATPase traffic in specific portions of the nephron. It was also shown to be one of several proteins whose expression is upregulated in human myelodysplastic syndrome (MDS) patients. GTPase activating proteins (GAPs) interact with GTP-bound Rab and accelerate the hydrolysis of GTP to GDP. Guanine nucleotide exchange factors (GEFs) interact with GDP-bound Rabs to promote the formation of the GTP-bound state. Rabs are further regulated by guanine nucleotide dissociation inhibitors (GDIs), which facilitate Rab recycling by masking C-terminal lipid binding and promoting cytosolic localization. Most Rab GTPases contain a lipid modification site at the C-terminus, with sequence motifs CC, CXC, or CCX. Lipid binding is essential for membrane attachment, a key feature of most Rab proteins.


Pssm-ID: 133326 [Multi-domain]  Cd Length: 220  Bit Score: 61.08  E-value: 4.50e-11
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFtKDYKKTIGVDFLERQieidGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04126  13 KTSLLHRYMERRF-KDTVSTVGGAFYLKQ----WGPYNISIWDTAGREQFHGLGSMYCRGAAAVILTYDVSNVQSLEELE 87
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 130 DWKRKVENECNE-IPTVIVQNKIDLIE-------------------QAVVTADEVETLAKLLNCRLI------------- 176
Cdd:cd04126  88 DRFLGLTDTANEdCLFAVVGNKLDLTEegalagqekdagdrvspedQRQVTLEDAKAFYKRINKYKMldedlspaaekmc 167
                       170       180       190       200
                ....*....|....*....|....*....|....*....|....
gi 21357169 177 -RTSVKEDINVASVFRYLATKCHQLMTQSYDQVAGNQQNSSHPP 219
Cdd:cd04126 168 fETSAKTGYNVDELFEYLFNLVLPLILAQRAEANRTQGTVNLPN 211
Rac1_like cd01871
Ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)-like ...
50-175 2.82e-10

Ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)-like consists of Rac1, Rac2 and Rac3; The Rac1-like subfamily consists of Rac1, Rac2, and Rac3 proteins, plus the splice variant Rac1b that contains a 19-residue insertion near switch II relative to Rac1. While Rac1 is ubiquitously expressed, Rac2 and Rac3 are largely restricted to hematopoietic and neural tissues respectively. Rac1 stimulates the formation of actin lamellipodia and membrane ruffles. It also plays a role in cell-matrix adhesion and cell anoikis. In intestinal epithelial cells, Rac1 is an important regulator of migration and mediates apoptosis. Rac1 is also essential for RhoA-regulated actin stress fiber and focal adhesion complex formation. In leukocytes, Rac1 and Rac2 have distinct roles in regulating cell morphology, migration, and invasion, but are not essential for macrophage migration or chemotaxis. Rac3 has biochemical properties that are closely related to Rac1, such as effector interaction, nucleotide binding, and hydrolysis; Rac2 has a slower nucleotide association and is more efficiently activated by the RacGEF Tiam1. Both Rac1 and Rac3 have been implicated in the regulation of cell migration and invasion in human metastatic breast cancer. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206663 [Multi-domain]  Cd Length: 174  Bit Score: 57.90  E-value: 2.82e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIgVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd01871  14 KTCLLISYTTNAFPGEYIPTV-FDNYSANVMVDGKPVNLGLWDTAGQEDYDRLRPLSYPQTDVFLICFSLVSPASFENVR 92
                        90       100       110       120
                ....*....|....*....|....*....|....*....|....*..
gi 21357169 130 -DWKRKVENECNEIPTVIVQNKIDLieqavvtADEVETLAKLLNCRL 175
Cdd:cd01871  93 aKWYPEVRHHCPNTPIILVGTKLDL-------RDDKDTIEKLKEKKL 132
Rho2 cd04129
Ras homology family 2 (Rho2) of small guanosine triphosphatases (GTPases); Rho2 is a fungal ...
50-204 5.40e-10

Ras homology family 2 (Rho2) of small guanosine triphosphatases (GTPases); Rho2 is a fungal GTPase that plays a role in cell morphogenesis, control of cell wall integrity, control of growth polarity, and maintenance of growth direction. Rho2 activates the protein kinase C homolog Pck2, and Pck2 controls Mok1, the major (1-3) alpha-D-glucan synthase. Together with Rho1 (RhoA), Rho2 regulates the construction of the cell wall. Unlike Rho1, Rho2 is not an essential protein, but its overexpression is lethal. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for proper intracellular localization via membrane attachment. As with other Rho family GTPases, the GDP/GTP cycling is regulated by GEFs (guanine nucleotide exchange factors), GAPs (GTPase-activating proteins) and GDIs (guanine nucleotide dissociation inhibitors).


Pssm-ID: 206702 [Multi-domain]  Cd Length: 190  Bit Score: 57.54  E-value: 5.40e-10
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLErQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04129  14 KTSLLYVFTLGEFPEEYHPTVFENYVT-DCRVDGKPVQLALWDTAGQEEYERLRPLSYSKAHVILIGFAIDTPDSLENVR 92
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 130 -DWKRKVENECNEIPTVIVQNKIDLIEQAV----------VTADEVETLAKLLNCR-LIRTSVKEDINVASVFRYlATKC 197
Cdd:cd04129  93 tKWIEEVRRYCPNVPVILVGLKKDLRQEAVakgnyatdefVPIQQAKLVARAIGAKkYMECSALTGEGVDDVFEA-ATRA 171

                ....*..
gi 21357169 198 HQLMTQS 204
Cdd:cd04129 172 ALLVRKS 178
Cdc42 cd01874
cell division cycle 42 (Cdc42) is a small GTPase of the Rho family; Cdc42 is an essential ...
50-171 2.76e-09

cell division cycle 42 (Cdc42) is a small GTPase of the Rho family; Cdc42 is an essential GTPase that belongs to the Rho family of Ras-like GTPases. These proteins act as molecular switches by responding to exogenous and/or endogenous signals and relaying those signals to activate downstream components of a biological pathway. Cdc42 transduces signals to the actin cytoskeleton to initiate and maintain polarized growth and to mitogen-activated protein morphogenesis. In the budding yeast Saccharomyces cerevisiae, Cdc42 plays an important role in multiple actin-dependent morphogenetic events such as bud emergence, mating-projection formation, and pseudohyphal growth. In mammalian cells, Cdc42 regulates a variety of actin-dependent events and induces the JNK/SAPK protein kinase cascade, which leads to the activation of transcription factors within the nucleus. Cdc42 mediates these processes through interactions with a myriad of downstream effectors, whose number and regulation we are just starting to understand. In addition, Cdc42 has been implicated in a number of human diseases through interactions with its regulators and downstream effectors. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206664 [Multi-domain]  Cd Length: 175  Bit Score: 55.26  E-value: 2.76e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIgVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd01874  14 KTCLLISYTTNKFPSEYVPTV-FDNYAVTVMIGGEPYTLGLFDTAGQEDYDRLRPLSYPQTDVFLVCFSVVSPSSFENVK 92
                        90       100       110       120       130
                ....*....|....*....|....*....|....*....|....*....|....*
gi 21357169 130 D-WKRKVENECNEIPTVIVQNKIDL------IE------QAVVTADEVETLAKLL 171
Cdd:cd01874  93 EkWVPEITHHCPKTPFLLVGTQIDLrddpstIEklaknkQKPITPETGEKLARDL 147
Rnd3_RhoE_Rho8 cd04172
Rnd3/RhoE/Rho8 GTPases; Rnd3/RhoE/Rho8 subfamily. Rnd3/RhoE/Rho8 is a member of the novel Rho ...
50-187 5.63e-09

Rnd3/RhoE/Rho8 GTPases; Rnd3/RhoE/Rho8 subfamily. Rnd3/RhoE/Rho8 is a member of the novel Rho subfamily Rnd, together with Rnd1/Rho6 and Rnd2/Rho7. Rnd3/RhoE is known to bind the serine-threonine kinase ROCK I. Unphosphorylated Rnd3/RhoE associates primarily with membranes, but ROCK I-phosphorylated Rnd3/RhoE localizes in the cytosol. Phosphorylation of Rnd3/RhoE correlates with its activity in disrupting RhoA-induced stress fibers and inhibiting Ras-induced fibroblast transformation. In cells that lack stress fibers, such as macrophages and monocytes, Rnd3/RhoE induces a redistribution of actin, causing morphological changes in the cell. In addition, Rnd3/RhoE has been shown to inhibit cell cycle progression in G1 phase at a point upstream of the pRb family pocket protein checkpoint. Rnd3/RhoE has also been shown to inhibit Ras- and Raf-induced fibroblast transformation. In mammary epithelial tumor cells, Rnd3/RhoE regulates the assembly of the apical junction complex and tight junction formation. Rnd3/RhoE is underexpressed in prostate cancer cells both in vitro and in vivo; re-expression of Rnd3/RhoE suppresses cell cycle progression and increases apoptosis, suggesting it may play a role in tumor suppression. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206735 [Multi-domain]  Cd Length: 182  Bit Score: 54.29  E-value: 5.63e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLErQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAI- 128
Cdd:cd04172  18 KTALLHVFAKDCFPENYVPTVFENYTA-SFEIDTQRIELSLWDTSGSPYYDNVRPLSYPDSDAVLICFDISRPETLDSVl 96
                        90       100       110       120       130
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 21357169 129 KDWKRKVENECNEIPTVIVQNKIDLieqavvtADEVETLAKLLNCRLIRTSVKEDINVA 187
Cdd:cd04172  97 KKWKGEIQEFCPNTKMLLVGCKSDL-------RTDVSTLVELSNHRQTPVSYDQGANMA 148
Rnd1_Rho6 cd04174
Rnd1/Rho6 GTPases; Rnd1/Rho6 is a member of the novel Rho subfamily Rnd, together with Rnd2 ...
50-197 6.63e-09

Rnd1/Rho6 GTPases; Rnd1/Rho6 is a member of the novel Rho subfamily Rnd, together with Rnd2/Rho7 and Rnd3/RhoE/Rho8. Rnd1/Rho6 binds GTP but does not hydrolyze it to GDP, indicating that it is constitutively active. In rat, Rnd1/Rho6 is highly expressed in the cerebral cortex and hippocampus during synapse formation, and plays a role in spine formation. Rnd1/Rho6 is also expressed in the liver and in endothelial cells, and is upregulated in uterine myometrial cells during pregnancy. Like Rnd3/RhoE/Rho8, Rnd1/Rho6 is believed to function as an antagonist to RhoA. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206737 [Multi-domain]  Cd Length: 232  Bit Score: 55.06  E-value: 6.63e-09
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLErQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFD-AI 128
Cdd:cd04174  26 KTAMLQVLAKDCYPETYVPTVFENYTA-CLETEEQRVELSLWDTSGSPYYDNVRPLCYSDSDAVLLCFDISRPEIFDsAL 104
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 129 KDWKRKVENECNEIPTVIVQNKIDL------------IEQAVVTADEVETLAKLLNCR--LIRTSVKEDINVASVFRYLA 194
Cdd:cd04174 105 KKWRAEILDYCPSTRILLIGCKTDLrtdlstlmelsnQKQAPISYEQGCAMAKQLGAEayLECSAFTSEKSIHSIFRTAS 184

                ...
gi 21357169 195 TKC 197
Cdd:cd04174 185 LLC 187
Tc10 cd04135
Rho GTPase TC10 (Tc10); TC10 is a Rho family protein that has been shown to induce microspike ...
50-174 2.14e-08

Rho GTPase TC10 (Tc10); TC10 is a Rho family protein that has been shown to induce microspike formation and neurite outgrowth in vitro. Its expression changes dramatically after peripheral nerve injury, suggesting an important role in promoting axonal outgrowth and regeneration. TC10 regulates translocation of insulin-stimulated GLUT4 in adipocytes and has also been shown to bind directly to Golgi COPI coat proteins. GTP-bound TC10 in vitro can bind numerous potential effectors. Depending on its subcellular localization and distinct functional domains, TC10 can differentially regulate two types of filamentous actin in adipocytes. TC10 mRNAs are highly expressed in three types of mouse muscle tissues: leg skeletal muscle, cardiac muscle, and uterus; they were also present in brain, with higher levels in adults than in newborns. TC10 has also been shown to play a role in regulating the expression of cystic fibrosis transmembrane conductance regulator (CFTR) through interactions with CFTR-associated ligand (CAL). The GTP-bound form of TC10 directs the trafficking of CFTR from the juxtanuclear region to the secretory pathway toward the plasma membrane, away from CAL-mediated DFTR degradation in the lysosome. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins. Due to the presence of truncated sequences in this CD, the lipid modification site is not available for annotation.


Pssm-ID: 206707 [Multi-domain]  Cd Length: 174  Bit Score: 52.71  E-value: 2.14e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIgVDFLERQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04135  13 KTCLLMSYANDAFPEEYVPTV-FDHYAVSVTVGGKQYLLGLYDTAGQEDYDRLRPLSYPMTDVFLICFSVVNPASFQNVK 91
                        90       100       110       120
                ....*....|....*....|....*....|....*....|....*.
gi 21357169 130 -DWKRKVENECNEIPTVIVQNKIDLieqavvtADEVETLAKLLNCR 174
Cdd:cd04135  92 eEWVPELKEYAPNVPYLLIGTQIDL-------RDDPKTLARLNDMK 130
Arl10_like cd04159
Arf-like 9 (Arl9) and 10 (Arl10) GTPases; Arl10-like subfamily. Arl9/Arl10 was identified from ...
50-193 2.16e-08

Arf-like 9 (Arl9) and 10 (Arl10) GTPases; Arl10-like subfamily. Arl9/Arl10 was identified from a human cancer-derived EST dataset. No functional information about the subfamily is available at the current time, but crystal structures of human Arl10b and Arl10c have been solved.


Pssm-ID: 206724 [Multi-domain]  Cd Length: 159  Bit Score: 52.32  E-value: 2.16e-08
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFleRQIEIDGedVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIK 129
Cdd:cd04159  12 KTTLVNVIASGQFSEDTIPTVGFNM--RKVTKGN--VTIKVWDLGGQPRFRSMWERYCRGVNAIVYVVDAADREKLEVAK 87
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 130 dwkrkveNECNE---------IPTVIVQNKIDLIEqavvtADEVETLAKLLNCRLIR--------TSVKEDINVASVFRY 192
Cdd:cd04159  88 -------NELHDllekpslegIPLLVLGNKNDLPG-----ALSVDELIEQMNLKSITdrevscysISAKEKTNIDIVLDW 155

                .
gi 21357169 193 L 193
Cdd:cd04159 156 L 156
Centaurin_gamma cd04103
Centaurin gamma (CENTG) GTPase; The centaurins (alpha, beta, gamma, and delta) are large, ...
50-196 1.51e-07

Centaurin gamma (CENTG) GTPase; The centaurins (alpha, beta, gamma, and delta) are large, multi-domain proteins that all contain an ArfGAP domain and ankyrin repeats, and in some cases, numerous additional domains. Centaurin gamma contains an additional GTPase domain near its N-terminus. The specific function of this GTPase domain has not been well characterized, but centaurin gamma 2 (CENTG2) may play a role in the development of autism. Centaurin gamma 1 is also called PIKE (phosphatidyl inositol (PI) 3-kinase enhancer) and centaurin gamma 2 is also known as AGAP (ArfGAP protein with a GTPase-like domain, ankyrin repeats and a Pleckstrin homology domain) or GGAP. Three isoforms of PIKE have been identified. PIKE-S (short) and PIKE-L (long) are brain-specific isoforms, with PIKE-S restricted to the nucleus and PIKE-L found in multiple cellular compartments. A third isoform, PIKE-A was identified in human glioblastoma brain cancers and has been found in various tissues. GGAP has been shown to have high GTPase activity due to a direct intramolecular interaction between the N-terminal GTPase domain and the C-terminal ArfGAP domain. In human tissue, AGAP mRNA was detected in skeletal muscle, kidney, placenta, brain, heart, colon, and lung. Reduced expression levels were also observed in the spleen, liver, and small intestine.


Pssm-ID: 133303  Cd Length: 158  Bit Score: 49.80  E-value: 1.51e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDyKKTIGVDFlERQIEIDGEDVRIMLWDTAGQEEfdcitkAYYRG-AQASVLVFSTTDRASFDAI 128
Cdd:cd04103  13 KSALVHRYLTGSYVQL-ESPEGGRF-KKEVLVDGQSHLLLIRDEGGAPD------AQFAGwVDAVIFVFSLEDEASFQTV 84
                        90       100       110       120       130       140       150
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 21357169 129 KDWKRKVENECN--EIPTVIV--QNKIDLIEQAVVTADEVETL-AKLLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:cd04103  85 YRLYHQLSSYRNisEIPLILVgtQDAISASNPRVIDDARARQLcADMKRCSYYETCATYGLNVERVFQEAAQK 157
trmE cd04164
trmE is a tRNA modification GTPase; TrmE (MnmE, ThdF, MSS1) is a 3-domain protein found in ...
73-186 2.79e-07

trmE is a tRNA modification GTPase; TrmE (MnmE, ThdF, MSS1) is a 3-domain protein found in bacteria and eukaryotes. It controls modification of the uridine at the wobble position (U34) of tRNAs that read codons ending with A or G in the mixed codon family boxes. TrmE contains a GTPase domain that forms a canonical Ras-like fold. It functions a molecular switch GTPase, and apparently uses a conformational change associated with GTP hydrolysis to promote the tRNA modification reaction, in which the conserved cysteine in the C-terminal domain is thought to function as a catalytic residue. In bacteria that are able to survive in extremely low pH conditions, TrmE regulates glutamate-dependent acid resistance.


Pssm-ID: 206727 [Multi-domain]  Cd Length: 159  Bit Score: 49.03  E-value: 2.79e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  73 DFLERQIEIDGEDVRIMlwDTAGQEEFDC------ITKAYYRGAQASVLVFSttdrasFDAIKDWK---RKVENECNEIP 143
Cdd:cd04164  40 DVIEEEIDLGGIPVRLI--DTAGLRETEDeiekigIERAREAIEEADLVLLV------VDASEGLDeedLEILELPAKKP 111
                        90       100       110       120
                ....*....|....*....|....*....|....*....|...
gi 21357169 144 TVIVQNKIDLIEQAvvtadevETLAKLLNCRLIRTSVKEDINV 186
Cdd:cd04164 112 VIVVLNKSDLLSDA-------EGISELNGKPIIAISAKTGEGI 147
RocCOR cd09914
Ras of complex proteins (Roc) C-terminal of Roc (COR) domain family; RocCOR (or Roco) protein ...
48-152 3.80e-07

Ras of complex proteins (Roc) C-terminal of Roc (COR) domain family; RocCOR (or Roco) protein family is characterized by a superdomain containing a Ras-like GTPase domain, called Roc (Ras of complex proteins), and a characteristic second domain called COR (C-terminal of Roc). A kinase domain and diverse regulatory domains are also often found in Roco proteins. Their functions are diverse; in Dictyostelium discoideum, which encodes 11 Roco proteins, they are involved in cell division, chemotaxis and development, while in human, where 4 Roco proteins (LRRK1, LRRK2, DAPK1, and MFHAS1) are encoded, these proteins are involved in epilepsy and cancer. Mutations in LRRK2 (leucine-rich repeat kinase 2) are known to cause familial Parkinson's disease.


Pssm-ID: 206741 [Multi-domain]  Cd Length: 161  Bit Score: 48.87  E-value: 3.80e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  48 VGKSSMIQRYCKGIFTKDYKKTIGVDFLERQIEI-DGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFD 126
Cdd:cd09914  12 VGKTSLCKQLIGEKFDGDESSTHGINVQDWKIPApERKKIRLNVWDFGGQEIYHATHQFFLTSRSLYLLVFDLRTGDEVS 91
                        90       100
                ....*....|....*....|....*.
gi 21357169 127 AIKDWKRKVENECNEIPTVIVQNKID 152
Cdd:cd09914  92 RVPYWLRQIKAFGGVSPVILVGTHID 117
Arfrp1 cd04160
Arf-related protein 1 (Arfrp1); Arfrp1 (Arf-related protein 1), formerly known as ARP, is a ...
59-167 7.33e-07

Arf-related protein 1 (Arfrp1); Arfrp1 (Arf-related protein 1), formerly known as ARP, is a membrane-associated Arf family member that lacks the N-terminal myristoylation motif. Arfrp1 is mainly associated with the trans-Golgi compartment and the trans-Golgi network, where it regulates the targeting of Arl1 and the GRIP domain-containing proteins, golgin-97 and golgin-245, onto Golgi membranes. It is also involved in the anterograde transport of the vesicular stomatitis virus G protein from the Golgi to the plasma membrane, and in the retrograde transport of TGN38 and Shiga toxin from endosomes to the trans-Golgi network. Arfrp1 also inhibits Arf/Sec7-dependent activation of phospholipase D. Deletion of Arfrp1 in mice causes embryonic lethality at the gastrulation stage and apoptosis of mesodermal cells, indicating its importance in development.


Pssm-ID: 206725 [Multi-domain]  Cd Length: 168  Bit Score: 48.11  E-value: 7.33e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  59 KGIFTKDYK--------KTIGVDFLErqieIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIKD 130
Cdd:cd04160  20 KTKFSKNYKglnpskitPTVGLNIGT----IEVGKARLMFWDLGGQEELRSLWDKYYAESHGVIYVIDSTDRERFNESKS 95
                        90       100       110
                ....*....|....*....|....*....|....*....
gi 21357169 131 -WKRKVENECNE-IPTVIVQNKIDLieQAVVTADEVETL 167
Cdd:cd04160  96 aFEKVINNEALEgVPLLVLANKQDL--PDALSVAEIKEV 132
Rnd2_Rho7 cd04173
Rnd2/Rho7 GTPases; Rnd2/Rho7 is a member of the novel Rho subfamily Rnd, together with Rnd1 ...
50-176 9.28e-07

Rnd2/Rho7 GTPases; Rnd2/Rho7 is a member of the novel Rho subfamily Rnd, together with Rnd1/Rho6 and Rnd3/RhoE/Rho8. Rnd2/Rho7 is transiently expressed in radially migrating cells in the brain while they are within the subventricular zone of the hippocampus and cerebral cortex. These migrating cells typically develop into pyramidal neurons. Cells that exogenously expressed Rnd2/Rho7 failed to migrate to upper layers of the brain, suggesting that Rnd2/Rho7 plays a role in the radial migration and morphological changes of developing pyramidal neurons, and that Rnd2/Rho7 degradation is necessary for proper cellular migration. The Rnd2/Rho7 GEF Rapostlin is found primarily in the brain and together with Rnd2/Rho7 induces dendrite branching. Unlike Rnd1/Rho6 and Rnd3/RhoE/Rho8, which are RhoA antagonists, Rnd2/Rho7 binds the GEF Pragmin and significantly stimulates RhoA activity and Rho-A mediated cell contraction. Rnd2/Rho7 is also found to be expressed in spermatocytes and early spermatids, with male-germ-cell Rac GTPase-activating protein (MgcRacGAP), where it localizes to the Golgi-derived pro-acrosomal vesicle. Most Rho proteins contain a lipid modification site at the C-terminus, with a typical sequence motif CaaX, where a = an aliphatic amino acid and X = any amino acid. Lipid binding is essential for membrane attachment, a key feature of most Rho proteins.


Pssm-ID: 206736 [Multi-domain]  Cd Length: 221  Bit Score: 48.48  E-value: 9.28e-07
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKKTIGVDFLErQIEIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAI- 128
Cdd:cd04173  14 KTALLHVFAKDNYPESYVPTVFENYTA-SFEIDKHRIELNMWDTSGSSYYDNVRPLAYPDSDAVLICFDISRPETLDSVl 92
                        90       100       110       120
                ....*....|....*....|....*....|....*....|....*...
gi 21357169 129 KDWKRKVENECNEIPTVIVQNKIDLieqavvtADEVETLAKLLNCRLI 176
Cdd:cd04173  93 KKWQGETQEFCPNAKLVLVGCKLDM-------RTDLSTLRELSKQRLI 133
Miro1 cd01893
Mitochondrial Rho family 1 (Miro1), N-terminal; Miro1 subfamily. Miro (mitochondrial Rho) ...
50-197 1.10e-06

Mitochondrial Rho family 1 (Miro1), N-terminal; Miro1 subfamily. Miro (mitochondrial Rho) proteins have tandem GTP-binding domains separated by a linker region containing putative calcium-binding EF hand motifs. Genes encoding Miro-like proteins were found in several eukaryotic organisms. This CD represents the N-terminal GTPase domain of Miro proteins. These atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. Most Rho proteins contain a lipid modification site at the C-terminus; however, Miro is one of few Rho subfamilies that lack this feature.


Pssm-ID: 206680 [Multi-domain]  Cd Length: 168  Bit Score: 47.33  E-value: 1.10e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  50 KSSMIQRYCKGIFTKDYKK-----TIGVDFLErqieidgEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRAS 124
Cdd:cd01893  15 KSSLIMSLVSEEFPENVPRvlpeiTIPADVTP-------ERVPTTIVDTSSRPQDRANLAAEIRKANVICLVYSVDRPST 87
                        90       100       110       120       130       140       150       160
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169 125 FDAIKD-WKRKVENECNEIPTVIVQNKIDLIEQAVVTADEvETLAKLLN-------CrlIRTSVKEDINVASVFrYLATK 196
Cdd:cd01893  88 LERIRTkWLPLIRRLGVKVPIILVGNKSDLRDGSSQAGLE-EEMLPIMNefreietC--VECSAKTLINVSEVF-YYAQK 163

                .
gi 21357169 197 C 197
Cdd:cd01893 164 A 164
MnmE COG0486
tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE [Translation, ribosomal ...
73-186 4.77e-05

tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE [Translation, ribosomal structure and biogenesis]; tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE is part of the Pathway/BioSystem: tRNA modification


Pssm-ID: 440253 [Multi-domain]  Cd Length: 448  Bit Score: 44.28  E-value: 4.77e-05
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  73 DFLERQIEIDGEDVRIMlwDTAGQEEFDC------ITKAYYRGAQASVLVF--------STTDRASFDAIKDwkrkvene 138
Cdd:COG0486 250 DVIEERINIGGIPVRLI--DTAGLRETEDevekigIERAREAIEEADLVLLlldaseplTEEDEEILEKLKD-------- 319
                        90       100       110       120
                ....*....|....*....|....*....|....*....|....*...
gi 21357169 139 cneIPTVIVQNKIDLIEqavvtaDEVETLAKLLNCRLIRTSVKEDINV 186
Cdd:COG0486 320 ---KPVIVVLNKIDLPS------EADGELKSLPGEPVIAISAKTGEGI 358
Arl5_Arl8 cd04153
Arf-like 5 (Arl5) and 8 (Arl8) GTPases; Arl5/Arl8 subfamily. Arl5 (Arf-like 5) and Arl8, like ...
80-130 4.68e-04

Arf-like 5 (Arl5) and 8 (Arl8) GTPases; Arl5/Arl8 subfamily. Arl5 (Arf-like 5) and Arl8, like Arl4 and Arl7, are localized to the nucleus and nucleolus. Arl5 is developmentally regulated during embryogenesis in mice. Human Arl5 interacts with the heterochromatin protein 1-alpha (HP1alpha), a nonhistone chromosomal protein that is associated with heterochromatin and telomeres, and prevents telomere fusion. Arl5 may also play a role in embryonic nuclear dynamics and/or signaling cascades. Arl8 was identified from a fetal cartilage cDNA library. It is found in brain, heart, lung, cartilage, and kidney. No function has been assigned for Arl8 to date.


Pssm-ID: 133353 [Multi-domain]  Cd Length: 174  Bit Score: 40.03  E-value: 4.68e-04
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|.
gi 21357169  80 EIDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIKD 130
Cdd:cd04153  53 EIVYKNIRFLMWDIGGQESLRSSWNTYYTNTDAVILVIDSTDRERLPLTKE 103
trmE PRK05291
tRNA uridine-5-carboxymethylaminomethyl(34) synthesis GTPase MnmE;
73-186 7.10e-04

tRNA uridine-5-carboxymethylaminomethyl(34) synthesis GTPase MnmE;


Pssm-ID: 235392 [Multi-domain]  Cd Length: 449  Bit Score: 40.48  E-value: 7.10e-04
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169   73 DFLERQIEIDGedVRIMLWDTAGQEEFD------CITKAYYRGAQASV--LVFSTTDRASFDAIKDWkrkveNECNEIPT 144
Cdd:PRK05291 252 DVIEEHINLDG--IPLRLIDTAGIRETDdevekiGIERSREAIEEADLvlLVLDASEPLTEEDDEIL-----EELKDKPV 324
                         90       100       110       120
                 ....*....|....*....|....*....|....*....|..
gi 21357169  145 VIVQNKIDLIEQAvvtadeveTLAKLLNCRLIRTSVKEDINV 186
Cdd:PRK05291 325 IVVLNKADLTGEI--------DLEEENGKPVIRISAKTGEGI 358
YjeQ_EngC cd01854
Ribosomal interacting GTPase YjeQ/EngC, a circularly permuted subfamily of the Ras GTPases; ...
138-196 1.16e-03

Ribosomal interacting GTPase YjeQ/EngC, a circularly permuted subfamily of the Ras GTPases; YjeQ (YloQ in Bacillus subtilis) is a ribosomal small subunit-dependent GTPase; hence also known as RsgA. YjeQ is a late-stage ribosomal biogenesis factor involved in the 30S subunit maturation, and it represents a protein family whose members are broadly conserved in bacteria and have been shown to be essential to the growth of E. coli and B. subtilis. Proteins of the YjeQ family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. All YjeQ family proteins display a unique domain architecture, which includes an N-terminal OB-fold RNA-binding domain, the central permuted GTPase domain, and a zinc knuckle-like C-terminal cysteine domain.


Pssm-ID: 206747 [Multi-domain]  Cd Length: 211  Bit Score: 39.30  E-value: 1.16e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*....
gi 21357169 138 ECNEIPTVIVQNKIDLIEQAVVtADEVETLAKlLNCRLIRTSVKEDINVASVFRYLATK 196
Cdd:cd01854  30 EASGIEPVIVLNKADLVDDEEL-EELLEIYEK-LGYPVLAVSAKTGEGLDELRELLKGK 86
ARLTS1 cd04156
Arf-like tumor suppressor gene 1 (ARLTS1 or Arl11); ARLTS1 (Arf-like tumor suppressor gene 1), ...
86-170 1.98e-03

Arf-like tumor suppressor gene 1 (ARLTS1 or Arl11); ARLTS1 (Arf-like tumor suppressor gene 1), also known as Arl11, is a member of the Arf family of small GTPases that is believed to play a major role in apoptotic signaling. ARLTS1 is widely expressed and functions as a tumor suppressor gene in several human cancers. ARLTS1 is a low-penetrance suppressor that accounts for a small percentage of familial melanoma or familial chronic lymphocytic leukemia (CLL). ARLTS1 inactivation seems to occur most frequently through biallelic down-regulation by hypermethylation of the promoter. In breast cancer, ARLTS1 alterations were typically a combination of a hypomorphic polymorphism plus loss of heterozygosity. In a case of thyroid adenoma, ARLTS1 alterations were polymorphism plus promoter hypermethylation. The nonsense polymorphism Trp149Stop occurs with significantly greater frequency in familial cancer cases than in sporadic cancer cases, and the Cys148Arg polymorphism is associated with an increase in high-risk familial breast cancer.


Pssm-ID: 133356 [Multi-domain]  Cd Length: 160  Bit Score: 37.78  E-value: 1.98e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  86 VRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFD-AIKDWKRKVENE-CNEIPTVIVQNKIDLieQAVVTADE 163
Cdd:cd04156  44 LSLTVWDVGGQEKMRTVWKCYLENTDGLVYVVDSSDEARLDeSQKELKHILKNEhIKGVPVVLLANKQDL--PGALTAEE 121

                ....*..
gi 21357169 164 VETLAKL 170
Cdd:cd04156 122 ITRRFKL 128
ARF smart00177
ARF-like small GTPases; ARF, ADP-ribosylation factor; Ras homologues involved in vesicular ...
84-155 2.83e-03

ARF-like small GTPases; ARF, ADP-ribosylation factor; Ras homologues involved in vesicular transport. Activator of phospholipase D isoforms. Unlike Ras proteins they lack cysteine residues at their C-termini and therefore are unlikely to be prenylated. ARFs are N-terminally myristoylated. Contains ATP/GTP-binding motif (P-loop).


Pssm-ID: 128474 [Multi-domain]  Cd Length: 175  Bit Score: 37.59  E-value: 2.83e-03
                           10        20        30        40        50        60        70
                   ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....
gi 21357169     84 EDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIKDWKRKV--ENECNEIPTVIVQNKIDLIE 155
Cdd:smart00177  55 KNISFTVWDVGGQDKIRPLWRHYYTNTQGLIFVVDSNDRDRIDEAREELHRMlnEDELRDAVILVFANKQDLPD 128
Era_like cd00880
E. coli Ras-like protein (Era)-like GTPase; The Era (E. coli Ras-like protein)-like family ...
84-194 3.34e-03

E. coli Ras-like protein (Era)-like GTPase; The Era (E. coli Ras-like protein)-like family includes several distinct subfamilies (TrmE/ThdF, FeoB, YihA (EngB), Era, and EngA/YfgK) that generally show sequence conservation in the region between the Walker A and B motifs (G1 and G3 box motifs), to the exclusion of other GTPases. TrmE is ubiquitous in bacteria and is a widespread mitochondrial protein in eukaryotes, but is absent from archaea. The yeast member of TrmE family, MSS1, is involved in mitochondrial translation; bacterial members are often present in translation-related operons. FeoB represents an unusual adaptation of GTPases for high-affinity iron (II) transport. YihA (EngB) family of GTPases is typified by the E. coli YihA, which is an essential protein involved in cell division control. Era is characterized by a distinct derivative of the KH domain (the pseudo-KH domain) which is located C-terminal to the GTPase domain. EngA and its orthologs are composed of two GTPase domains and, since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family.


Pssm-ID: 206646 [Multi-domain]  Cd Length: 161  Bit Score: 37.23  E-value: 3.34e-03
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  84 EDVRIMLWDTAGQeeFDCITKAYYRGA-------QASVLVF---STTDRASFDAIKDWKRKvenecNEIPTVIVQNKIDL 153
Cdd:cd00880  44 PLGPVVLIDTPGL--DEEGGLGRERVEearqvadRADLVLLvvdSDLTPVEEEAKLGLLRE-----RGKPVLLVLNKIDL 116
                        90       100       110       120
                ....*....|....*....|....*....|....*....|..
gi 21357169 154 I-EQAVVTADEVETLAKLLNCRLIRTSVKEDINVASVFRYLA 194
Cdd:cd00880 117 VpESEEEELLRERKLELLPDLPVIAVSALPGEGIDELRKKIA 158
PLN00223 PLN00223
ADP-ribosylation factor; Provisional
81-153 5.60e-03

ADP-ribosylation factor; Provisional


Pssm-ID: 165788  Cd Length: 181  Bit Score: 36.87  E-value: 5.60e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 21357169   81 IDGEDVRIMLWDTAGQEEFDCITKAYYRGAQASVLVFSTTDRASFDAIKDWKRKV--ENECNEIPTVIVQNKIDL 153
Cdd:PLN00223  56 VEYKNISFTVWDVGGQDKIRPLWRHYFQNTQGLIFVVDSNDRDRVVEARDELHRMlnEDELRDAVLLVFANKQDL 130
PRK00098 PRK00098
GTPase RsgA; Reviewed
138-204 7.71e-03

GTPase RsgA; Reviewed


Pssm-ID: 234631 [Multi-domain]  Cd Length: 298  Bit Score: 37.11  E-value: 7.71e-03
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 21357169  138 ECNEIPTVIVQNKIDLIEQavvtADEVETLAKL---LNCRLIRTSVKEDINVASVFRYLATKCHQLMTQS 204
Cdd:PRK00098 108 EANGIKPIIVLNKIDLLDD----LEEARELLALyraIGYDVLELSAKEGEGLDELKPLLAGKVTVLAGQS 173
MMR_HSR1_Xtn pfam16897
C-terminal region of MMR_HSR1 domain; MMR_HSR1_Xtn is the C-terminal region of some members of ...
142-186 9.79e-03

C-terminal region of MMR_HSR1 domain; MMR_HSR1_Xtn is the C-terminal region of some members of the MMR_HSR1 family.


Pssm-ID: 465301 [Multi-domain]  Cd Length: 105  Bit Score: 35.09  E-value: 9.79e-03
                          10        20        30        40
                  ....*....|....*....|....*....|....*....|....*
gi 21357169   142 IPTVIVQNKIDLIeqavvTADEVETLAKLLNCrlIRTSVKEDINV 186
Cdd:pfam16897  55 IPCLYVYNKIDLI-----SIEELDRLAREPDS--VPISAEKGLNL 92
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH