methuselah-like 15, isoform C [Drosophila melanogaster]
Mth_Ecto and 7tmB3_Methuselah-like domain-containing protein( domain architecture ID 11664634)
Mth_Ecto and 7tmB3_Methuselah-like domain-containing protein
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
7tmB3_Methuselah-like | cd15039 | Methuselah-like subfamily B3, member of the class B family of seven-transmembrane G ... |
379-665 | 3.16e-91 | |||||
Methuselah-like subfamily B3, member of the class B family of seven-transmembrane G protein-coupled receptors; The subfamily B3 of class B GPCRs consists of Methuselah (Mth) and its closely related proteins found in bilateria. Mth was originally identified in Drosophila as a GPCR affecting stress resistance and aging. In addition to the seven transmembrane helices, Mth contains an N-terminal extracellular domain involved in ligand binding, and a third intracellular loop (IC3) required for the specificity of G-protein coupling. Drosophila Mth mutants showed an increase in average lifespan by 35% and greater resistance to a variety of stress factors, including starvation, high temperature, and paraquat-induced oxidative toxicity. Moreover, mutations in two endogenous peptide ligands of Methuselah, Stunted A and B, showed an increased in lifespan and resistance to oxidative stress induced by dietary paraquat. These results strongly suggest that the Stunted-Methuselah system plays important roles in stress response and aging. : Pssm-ID: 410632 [Multi-domain] Cd Length: 270 Bit Score: 285.66 E-value: 3.16e-91
|
|||||||||
Mth_Ecto super family | cl11637 | The ectodomain of Methuselah (Mth); Mth mutants have a 35% increase in average lifespan and ... |
247-355 | 3.34e-04 | |||||
The ectodomain of Methuselah (Mth); Mth mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage; The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family; Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. The actual alignment was detected with superfamily member cd00251: Pssm-ID: 448329 Cd Length: 176 Bit Score: 41.89 E-value: 3.34e-04
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
7tmB3_Methuselah-like | cd15039 | Methuselah-like subfamily B3, member of the class B family of seven-transmembrane G ... |
379-665 | 3.16e-91 | |||||
Methuselah-like subfamily B3, member of the class B family of seven-transmembrane G protein-coupled receptors; The subfamily B3 of class B GPCRs consists of Methuselah (Mth) and its closely related proteins found in bilateria. Mth was originally identified in Drosophila as a GPCR affecting stress resistance and aging. In addition to the seven transmembrane helices, Mth contains an N-terminal extracellular domain involved in ligand binding, and a third intracellular loop (IC3) required for the specificity of G-protein coupling. Drosophila Mth mutants showed an increase in average lifespan by 35% and greater resistance to a variety of stress factors, including starvation, high temperature, and paraquat-induced oxidative toxicity. Moreover, mutations in two endogenous peptide ligands of Methuselah, Stunted A and B, showed an increased in lifespan and resistance to oxidative stress induced by dietary paraquat. These results strongly suggest that the Stunted-Methuselah system plays important roles in stress response and aging. Pssm-ID: 410632 [Multi-domain] Cd Length: 270 Bit Score: 285.66 E-value: 3.16e-91
|
|||||||||
7tm_2 | pfam00002 | 7 transmembrane receptor (Secretin family); This family is known as Family B, the ... |
385-646 | 6.73e-14 | |||||
7 transmembrane receptor (Secretin family); This family is known as Family B, the secretin-receptor family or family 2 of the G-protein-coupled receptors (GCPRs). They have been described in many animal species, but not in plants, fungi or prokaryotes. Three distinct sub-families are recognized. Subfamily B1 contains classical hormone receptors, such as receptors for secretin and glucagon, that are all involved in cAMP-mediated signalling pathways. Subfamily B2 contains receptors with long extracellular N-termini, such as the leukocyte cell-surface antigen CD97; calcium-independent receptors for latrotoxin, and brain-specific angiogenesis inhibitors amongst others. Subfamily B3 includes Methuselah and other Drosophila proteins. Other than the typical seven-transmembrane region, characteriztic structural features include an amino-terminal extracellular domain involved in ligand binding, and an intracellular loop (IC3) required for specific G-protein coupling. Pssm-ID: 459625 [Multi-domain] Cd Length: 248 Bit Score: 71.93 E-value: 6.73e-14
|
|||||||||
Mth_Ecto | cd00251 | The ectodomain of Methuselah (Mth); Mth mutants have a 35% increase in average lifespan and ... |
247-355 | 3.34e-04 | |||||
The ectodomain of Methuselah (Mth); Mth mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage; The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family; Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. Pssm-ID: 119403 Cd Length: 176 Bit Score: 41.89 E-value: 3.34e-04
|
|||||||||
Methuselah_N | pfam06652 | Methuselah N-terminus; This family represents the N-terminal region of the Drosophila specific ... |
247-355 | 5.78e-03 | |||||
Methuselah N-terminus; This family represents the N-terminal region of the Drosophila specific Methuselah protein. Drosophila Methuselah (Mth) mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage. The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family. Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. This family is found in conjunction with pfam00002. Pssm-ID: 429053 Cd Length: 179 Bit Score: 38.39 E-value: 5.78e-03
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
7tmB3_Methuselah-like | cd15039 | Methuselah-like subfamily B3, member of the class B family of seven-transmembrane G ... |
379-665 | 3.16e-91 | |||||
Methuselah-like subfamily B3, member of the class B family of seven-transmembrane G protein-coupled receptors; The subfamily B3 of class B GPCRs consists of Methuselah (Mth) and its closely related proteins found in bilateria. Mth was originally identified in Drosophila as a GPCR affecting stress resistance and aging. In addition to the seven transmembrane helices, Mth contains an N-terminal extracellular domain involved in ligand binding, and a third intracellular loop (IC3) required for the specificity of G-protein coupling. Drosophila Mth mutants showed an increase in average lifespan by 35% and greater resistance to a variety of stress factors, including starvation, high temperature, and paraquat-induced oxidative toxicity. Moreover, mutations in two endogenous peptide ligands of Methuselah, Stunted A and B, showed an increased in lifespan and resistance to oxidative stress induced by dietary paraquat. These results strongly suggest that the Stunted-Methuselah system plays important roles in stress response and aging. Pssm-ID: 410632 [Multi-domain] Cd Length: 270 Bit Score: 285.66 E-value: 3.16e-91
|
|||||||||
7tm_classB | cd13952 | class B family of seven-transmembrane G protein-coupled receptors; The class B of ... |
379-655 | 1.09e-65 | |||||
class B family of seven-transmembrane G protein-coupled receptors; The class B of seven-transmembrane GPCRs is classified into three major subfamilies: subfamily B1 (secretin-like receptor family), B2 (adhesion family), and B3 (Methuselah-like family). The class B receptors have been identified in all the vertebrates, from fishes to mammals, as well as invertebrates including Caenorhabditis elegans and Drosophila melanogaster, but are not present in plants, fungi or prokaryotes. The B1 subfamily comprises receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the subfamily B1 receptors preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. The subfamily B2 consists of cell-adhesion receptors with 33 members in humans and vertebrates. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing a variety of structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, linked to a class B seven-transmembrane domain. These include, for example, EGF (epidermal growth factor)-like domains in CD97, Celsr1 (cadherin family member), Celsr2, Celsr3, EMR1 (EGF-module-containing mucin-like hormone receptor-like 1), EMR2, EMR3, and Flamingo; two laminin A G-type repeats and nine cadherin domains in Flamingo and its human orthologs Celsr1, Celsr2 and Celsr3; olfactomedin-like domains in the latrotoxin receptors; and five or four thrombospondin type 1 repeats in BAI1 (brain-specific angiogenesis inhibitor 1), BAI2 and BAI3. Almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Furthermore, the subfamily B3 includes Methuselah (Mth) protein, which was originally identified in Drosophila as a GPCR affecting stress resistance and aging, and its closely related proteins. Pssm-ID: 410627 [Multi-domain] Cd Length: 260 Bit Score: 217.85 E-value: 1.09e-65
|
|||||||||
7tmB2_Adhesion | cd15040 | adhesion receptors, subfamily B2 of the class B family of seven-transmembrane G ... |
388-655 | 2.17e-30 | |||||
adhesion receptors, subfamily B2 of the class B family of seven-transmembrane G protein-coupled receptors; The B2 subfamily of class B GPCRs consists of cell-adhesion receptors with 33 members in humans and vertebrates. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing a variety of structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, linked to a class B seven-transmembrane domain. These include, for example, EGF (epidermal growth factor)-like domains in CD97, Celsr1 (cadherin family member), Celsr2, Celsr3, EMR1 (EGF-module-containing mucin-like hormone receptor-like 1), EMR2, EMR3, and Flamingo; two laminin A G-type repeats and nine cadherin domains in Flamingo and its human orthologs Celsr1, Celsr2 and Celsr3; olfactomedin-like domains in the latrotoxin receptors; and five or four thrombospondin type 1 repeats in BAI1 (brain-specific angiogenesis inhibitor 1), BAI2 and BAI3. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320168 [Multi-domain] Cd Length: 253 Bit Score: 120.37 E-value: 2.17e-30
|
|||||||||
7tmB2_GPR133-like_Adhesion_V | cd15933 | orphan GPR133 and related proteins, group V adhesion GPCRs, member of class B2 family of ... |
388-660 | 1.89e-16 | |||||
orphan GPR133 and related proteins, group V adhesion GPCRs, member of class B2 family of seven-transmembrane G protein-coupled receptors; group V adhesion GPCRs include orphan receptors GPR133, GPR144, and closely related proteins. The function of GPR144 has not yet been characterized, whereas GPR133 is highly expressed in the pituitary gland and is coupled to the G(s) protein, leading to activation of adenylate cyclase pathway. Moreover, genetic variations in the GPR133 have been reported to be associated with adult height and heart rate. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS. Pssm-ID: 320599 [Multi-domain] Cd Length: 252 Bit Score: 79.68 E-value: 1.89e-16
|
|||||||||
7tmB2_GPR126-like_Adhesion_VIII | cd15258 | orphan GPR126 and related proteins, group VIII adhesion GPCRs, member of the class B2 family ... |
388-650 | 4.54e-14 | |||||
orphan GPR126 and related proteins, group VIII adhesion GPCRs, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Group VIII adhesion GPCRs include orphan GPCRs such as GPR56, GPR64, GPR97, GPR112, GPR114, and GPR126. GPR56 is involved in the regulation of oligodendrocyte development and myelination in the central nervous system via coupling to G(12/13) proteins, which leads to the activation of RhoA GTPase. GPR126, on the other hand, is required for Schwann cells, but not oligodendrocyte myelination in the peripheral nervous system. Gpr64 is mainly expressed in the epididymis of male reproductive tract, and targeted deletion of GPR64 causes sperm stasis and efferent duct blockage due to abnormal fluid reabsorption, resulting in male infertility. GPR64 is also over-expressed in Ewing's sarcoma (ES), as well as upregulated in other carcinomas from kidney, prostate or lung, and promotes invasiveness and metastasis in ES via the upregulation of placental growth factor (PGF) and matrix metalloproteinase (MMP) 1. GPR97 is identified as a lymphatic adhesion receptor that is specifically expressed in lymphatic endothelium, but not in blood vascular endothelium, and is shown to regulate migration of lymphatic endothelial cells via the small GTPases RhoA and cdc42. GPR112 is specifically expressed in normal enterochromatin cells and gastrointestinal neuroendocrine carcinoma cells, but its biological function is unknown. GPR114 is mainly found in granulocytes (polymorphonuclear leukocytes), and GPR114-transfected cells induced an increase in cAMP levels via coupling to G(s) protein. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320386 [Multi-domain] Cd Length: 267 Bit Score: 72.83 E-value: 4.54e-14
|
|||||||||
7tm_2 | pfam00002 | 7 transmembrane receptor (Secretin family); This family is known as Family B, the ... |
385-646 | 6.73e-14 | |||||
7 transmembrane receptor (Secretin family); This family is known as Family B, the secretin-receptor family or family 2 of the G-protein-coupled receptors (GCPRs). They have been described in many animal species, but not in plants, fungi or prokaryotes. Three distinct sub-families are recognized. Subfamily B1 contains classical hormone receptors, such as receptors for secretin and glucagon, that are all involved in cAMP-mediated signalling pathways. Subfamily B2 contains receptors with long extracellular N-termini, such as the leukocyte cell-surface antigen CD97; calcium-independent receptors for latrotoxin, and brain-specific angiogenesis inhibitors amongst others. Subfamily B3 includes Methuselah and other Drosophila proteins. Other than the typical seven-transmembrane region, characteriztic structural features include an amino-terminal extracellular domain involved in ligand binding, and an intracellular loop (IC3) required for specific G-protein coupling. Pssm-ID: 459625 [Multi-domain] Cd Length: 248 Bit Score: 71.93 E-value: 6.73e-14
|
|||||||||
7tmB2_GPR126 | cd15996 | orphan adhesion receptor GPR126, member of the class B2 family of seven-transmembrane G ... |
388-648 | 2.11e-13 | |||||
orphan adhesion receptor GPR126, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR126 is an orphan receptor that has been classified as that belongs to the Group VIII of adhesion GPCRs. Other members of the Group VII include orphan GPCRs such as GPR56, GPR64, GPR97, GPR112, and GPR114. GPR126 is required in Schwann cells for proper differentiation and myelination via G-Protein Activation. GPR126 is believed to couple to G(s)-protein, which leads to activation of adenylate cyclase for cAMP production. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320662 Cd Length: 271 Bit Score: 71.07 E-value: 2.11e-13
|
|||||||||
7tmB2_GPR112 | cd15997 | Probable G protein-coupled receptor 112, member of the class B2 family of seven-transmembrane ... |
388-652 | 4.60e-13 | |||||
Probable G protein-coupled receptor 112, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR112 is an orphan receptor that has been classified as that belongs to the Group VIII of adhesion GPCRs. Other members of the Group VII include orphan GPCRs such as GPR56, GPR64, GPR97, GPR114, and GPR126. GPR112 is specifically expressed in normal enterochromatin cells and gastrointestinal neuroendocrine carcinoma cells, but its biological function is unknown. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320663 Cd Length: 269 Bit Score: 70.07 E-value: 4.60e-13
|
|||||||||
7tmB2_GPR128 | cd15257 | orphan adhesion receptor GPR128, member of the class B2 family of seven-transmembrane G ... |
388-657 | 7.79e-13 | |||||
orphan adhesion receptor GPR128, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR128 is an orphan receptor of the adhesion family (subclass B2) that belongs to the class B GPCRs. Expression of GPR128 was detected in the mouse intestinal mucosa and is thought to be involved in energy balance, as its knockout mice showed a decrease in body weight gain and an increase in intestinal contraction frequency compared to wild-type controls. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. These include, for example, EGF (epidermal growth factor)-like domains in CD97, Celsr1 (cadherin family member), Celsr2, Celsr3, EMR1 (EGF-module-containing mucin-like hormone receptor-like 1), EMR2, EMR3, and Flamingo; two laminin A G-type repeats and nine cadherin domains in Flamingo and its human orthologs Celsr1, Celsr2 and Celsr3; olfactomedin-like domains in the latrotoxin receptors; and five or four thrombospondin type 1 repeats in BAI1 (brain-specific angiogenesis inhibitor 1), BAI2 and BAI3. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320385 [Multi-domain] Cd Length: 303 Bit Score: 69.90 E-value: 7.79e-13
|
|||||||||
7tmB2_latrophilin-like_invertebrate | cd15440 | invertebrate latrophilin-like receptors, member of the class B2 family of seven-transmembrane ... |
388-652 | 6.29e-12 | |||||
invertebrate latrophilin-like receptors, member of the class B2 family of seven-transmembrane G protein-coupled receptors; This subgroup includes latrophilin-like proteins that are found in invertebrates such as insects and worms. Latrophilins (also called lectomedins or latrotoxin receptors) belong to Group I adhesion GPCRs, which also include ETL (EGF-TM7-latrophilin-related protein). These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of vertebrate latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320556 [Multi-domain] Cd Length: 259 Bit Score: 66.52 E-value: 6.29e-12
|
|||||||||
7tmB2_BAI_Adhesion_VII | cd15251 | brain-specific angiogenesis inhibitors, group VII adhesion GPCRs, member of the class B2 ... |
388-655 | 1.27e-11 | |||||
brain-specific angiogenesis inhibitors, group VII adhesion GPCRs, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Brain-specific angiogenesis inhibitors (BAI1-3) constitute the group VII of cell-adhesion receptors that have been implicated in vascularization of glioblastomas. They belong to the B2 subfamily of class B GPCRs, are predominantly expressed in the brain, and are only present in vertebrates. Three BAIs, like all adhesion receptors, are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. For example, BAI1 N-terminus contain an integrin-binding RGD (Arg-Gly-Asp) motif in addition to five thrombospondin type 1 repeats (TSRs), which are known to regulate the anti-angiogenic activity of thrombospondin-1, whereas BAI2 and BAI3 have four TSRs, but do not possess RGD motifs. The TSRs are functionally involved in cell attachment, activation of latent TGF-beta, inhibition of angiogenesis and endothelial cell migration. The TSRs of BAI1 mediate direct binding to phosphatidylserine, which enables both recognition and internalization of apoptotic cells by phagocytes. Thus, BAI1 functions as a phosphatidylserine receptor that forms a trimeric complex with ELMO and Dock180, leading to activation of Rac-GTPase which promotes the binding and phagocytosis of apoptotic cells. BAI3 can also interact with the ELMO-Dock180 complex to activate the Rac pathway and can also bind to secreted C1ql proteins of the C1Q complement family via its N-terminal TSRs. BAI3 and its ligands C1QL1 are highly expressed during synaptogenesis and are involved in synapse specificity. Moreover, BAI2 acts as a transcription repressor to regulate vascular endothelial growth factor (VEGF) expression through interaction with GA-binding protein gamma (GABP). The N-terminal extracellular domains of all three BAIs also contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain, which undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif to generate N- and C-terminal fragments (NTF and CTF), a putative hormone-binding domain (HBD), and multiple N-glycosylation sites. The C-terminus of each BAI subtype ends with a conserved Gln-Thr-Glu-Val (QTEV) motif known to interact with PDZ domain-containing proteins, but only BAI1 possesses a proline-rich region, which may be involved in protein-protein interactions. Pssm-ID: 320379 Cd Length: 253 Bit Score: 65.35 E-value: 1.27e-11
|
|||||||||
7tmB2_CELSR_Adhesion_IV | cd15441 | cadherin EGF LAG seven-pass G-type receptors, group IV adhesion GPCRs, member of the class B2 ... |
388-652 | 3.32e-11 | |||||
cadherin EGF LAG seven-pass G-type receptors, group IV adhesion GPCRs, member of the class B2 family of seven-transmembrane G protein-coupled receptors; The group IV adhesion GPCRs include the cadherin EGF LAG seven-pass G-type receptors (CELSRs) and their Drosophila homolog Flamingo (also known as Starry night). These receptors are also classified as that belongs to the EGF-TM7 group of subfamily B2 adhesion GPCRs, because they contain EGF-like domains. Functionally, the group IV receptors act as key regulators of many physiological processes such as endocrine cell differentiation, neuronal migration, dendrite growth, axon, guidance, lymphatic vessel and valve formation, and planar cell polarity (PCP) during embryonic development. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. In the case of CELSR/Flamingo/Starry night, their extracellular domains comprise nine cadherin repeats linked to a series of epidermal growth factor (EGF)-like and laminin globular (G)-like domains. The cadherin repeats contain sequence motifs that mediate calcium-dependent cell-cell adhesion by homophilic interactions. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Three mammalian orthologs of Flamingo, Celsr1-3, are widely expressed in the nervous system from embryonic development until the adult stage. Each Celsr exhibits different expression patterns in the developing brain, suggesting that they serve distinct functions. Mutations of CELSR1 cause neural tube defects in the nervous system, while mutations of CELSR2 are associated with coronary heart disease. Moreover, CELSR1 and several other PCP signaling molecules, such as dishevelled, prickle, frizzled, have been shown to be upregulated in B lymphocytes of chronic lymphocytic leukemia patients. Celsr3 is expressed in both the developing and adult mouse brain. It has been functionally implicated in proper neuron migration and axon guidance in the CNS. Pssm-ID: 320557 [Multi-domain] Cd Length: 254 Bit Score: 64.19 E-value: 3.32e-11
|
|||||||||
7tmB2_CELSR1 | cd15991 | Cadherin EGF LAG seven-pass G-type receptor 1, member of the class B2 family of ... |
399-648 | 3.43e-11 | |||||
Cadherin EGF LAG seven-pass G-type receptor 1, member of the class B2 family of seven-transmembrane G protein-coupled receptors; The group IV adhesion GPCRs include the cadherin EGF LAG seven-pass G-type receptors (CELSRs) and their Drosophila homolog Flamingo (also known as Starry night). These receptors are also classified as that belongs to the EGF-TM7 group of subfamily B2 adhesion GPCRs, because they contain EGF-like domains. Functionally, the group IV receptors act as key regulators of many physiological processes such as endocrine cell differentiation, neuronal migration, dendrite growth, axon, guidance, lymphatic vessel and valve formation, and planar cell polarity (PCP) during embryonic development. Three mammalian orthologs of Flamingo, Celsr1-3, are widely expressed in the nervous system from embryonic development until the adult stage. Each Celsr exhibits different expression patterns in the developing brain, suggesting that they serve distinct functions. Mutations of CELSR1 cause neural tube defects in the nervous system, while mutations of CELSR2 are associated with coronary heart disease. Moreover, CELSR1 and several other PCP signaling molecules, such as dishevelled, prickle, frizzled, have been shown to be upregulated in B lymphocytes of chronic lymphocytic leukemia patients. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. In the case of CELSR/Flamingo/Starry night, their extracellular domains comprise nine cadherin repeats linked to a series of epidermal growth factor (EGF)-like and laminin globular (G)-like domains. The cadherin repeats contain sequence motifs that mediate calcium-dependent cell-cell adhesion by homophilic interactions. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320657 [Multi-domain] Cd Length: 254 Bit Score: 64.10 E-value: 3.43e-11
|
|||||||||
7tmB2_GPR64 | cd15444 | orphan adhesion receptor GPR64 and related proteins, member of subfamily B2 of the class B ... |
388-650 | 6.87e-11 | |||||
orphan adhesion receptor GPR64 and related proteins, member of subfamily B2 of the class B secretin-like receptors of seven-transmembrane G protein-coupled receptors; GPR64 is an orphan receptor that has been classified as that belongs to the Group VIII of adhesion GPCRs. Other members of the Group VII include orphan GPCRs such as GPR56, GPR97, GPR112, GPR114, and GPR126. GPR64 is mainly expressed in the epididymis of male reproductive tract, and targeted deletion of GPR64 causes sperm stasis and efferent duct blockage due to abnormal fluid reabsorption, resulting in male infertility. GPR64 is also over-expressed in Ewing's sarcoma (ES), as well as upregulated in other carcinomas from kidney, prostate or lung, and promotes invasiveness and metastasis in ES via the upregulation of placental growth factor (PGF) and matrix metalloproteinase (MMP) 1. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320560 [Multi-domain] Cd Length: 271 Bit Score: 63.69 E-value: 6.87e-11
|
|||||||||
7tmB2_GPR124-like_Adhesion_III | cd15259 | orphan GPR124 and related proteins, group III adhesion GPCRs, member of class B2 family of ... |
389-655 | 7.36e-11 | |||||
orphan GPR124 and related proteins, group III adhesion GPCRs, member of class B2 family of seven-transmembrane G protein-coupled receptors; group III adhesion GPCRs include orphan GPR123, GPR124, GPR125, and their closely related proteins. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. GPR123 is predominantly expressed in the CNS including thalamus, brain stem and regions containing large pyramidal cells. GPR124, also known as tumor endothelial marker 5 (TEM5), is highly expressed in tumor vessels and in the vasculature of the developing embryo. GPR124 is essentially required for proper angiogenic sprouting into neural tissue, CNS-specific vascularization, and formation of the blood-brain barrier. GPR124 also interacts with the PDZ domain of DLG1 (discs large homolog 1) through its PDZ-binding motif. Recently, studies of double-knockout mice showed that GPR124 functions as a co-activator of Wnt7a/Wnt7b-dependent beta-catenin signaling in brain endothelium. Furthermore, WNT7-stimulated beta-catenin signaling is regulated by GPR124's intracellular PDZ binding motif and leucine-rich repeats (LRR) in its N-terminal extracellular domain. GPR125 directly interacts with dishevelled (Dvl) via its intracellular C-terminus, and together, GPR125 and Dvl recruit a subset of planar cell polarity (PCP) components into membrane subdomains, a prerequisite for activation of Wnt/PCP signaling. Thus, GPR125 influences the noncanonical WNT/PCP pathway, which does not involve beta-catenin, through interacting with and modulating the distribution of Dvl. Pssm-ID: 320387 [Multi-domain] Cd Length: 260 Bit Score: 63.16 E-value: 7.36e-11
|
|||||||||
7tmB2_CD97 | cd15438 | CD97 antigen, member of the class B2 family of seven-transmembrane G protein-coupled receptors; ... |
388-649 | 7.53e-11 | |||||
CD97 antigen, member of the class B2 family of seven-transmembrane G protein-coupled receptors; group II adhesion GPCRs, including the leukocyte cell-surface antigen CD97 and the epidermal growth factor (EGF)-module-containing, mucin-like hormone receptor (EMR1-4), are primarily expressed in cells of the immune system. All EGF-TM7 receptors, which belong to the B2 subfamily B2 of adhesion GPCRs, are members of group II, except for ETL (EGF-TM7-latrophilin related protein), which is classified into group I. Members of the EGF-TM7 receptors are characterized by the presence of varying numbers of N-terminal EGF-like domains, which play critical roles in ligand recognition and cell adhesion, linked by a stalk region to a class B seven-transmembrane domain. In the case of CD97, alternative splicing results in three isoforms possessing either three (EGF1,2,5), four (EGF1,2,3,5) or five (EGF1,2,3,4,5) EGF-like domains. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. For example, CD97, which is involved in angiogenesis and the migration and invasion of tumor cells, has been shown to promote cell aggregation in a GPS proteolysis-dependent manner. CD97 is widely expressed on lymphocytes, monocytes, macrophages, dendritic cells, granulocytes and smooth muscle cells as well as in a variety of human tumors including colorectal, gastric, esophageal pancreatic, and thyroid carcinoma. EMR2 shares strong sequence homology with CD97, differing by only six amino acids. However, unlike CD97, EMR2 is not found in those of CD97-positive tumor cells and is not expressed on lymphocytes but instead on monocytes, macrophages and granulocytes. CD97 has three known ligands: CD55, decay-accelerating factor for regulation of complement system; chondroitin sulfate, a glycosaminoglycan found in the extracellular matrix; and the integrin alpha5beta1, which play a role in angiogenesis. Although EMR2 does not effectively interact with CD55, the fourth EGF-like domain of this receptor binds to chondroitin sulfate to mediate cell attachment. Pssm-ID: 320554 [Multi-domain] Cd Length: 261 Bit Score: 63.24 E-value: 7.53e-11
|
|||||||||
7tmB2_EMR | cd15439 | epidermal growth factor-like module-containing mucin-like hormone receptors, member of the ... |
379-649 | 1.83e-10 | |||||
epidermal growth factor-like module-containing mucin-like hormone receptors, member of the class B2 family of seven-transmembrane G protein-coupled receptors; group II adhesion GPCRs, including the epidermal growth factor (EGF)-module-containing, mucin-like hormone receptor (EMR1-4) and the leukocyte cell-surface antigen CD97, are primarily expressed in cells of the immune system. All EGF-TM7 receptors, which belong to the B2 subfamily of adhesion GPCRs, are members of group II, except for ETL (EGF-TM7-latrophilin related protein), which is classified into group I. Members of the EGF-TM7 receptors are characterized by the presence of varying number of N-terminal EGF-like domains, which play critical roles in ligand recognition and cell adhesion, linked by a stalk region to a class B seven-transmembrane domain. In the case of EMR2, alternative splicing results in four isoforms possessing either two (EGF1,2), three (EGF1,2,5), four (EGF1,2,3,5) or five (EGF1,2,3,4,5) EGF-like domains. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. EMR2 shares strong sequence homology with CD97, differing by only six amino acids. CD97 is widely expressed on lymphocytes, monocytes, macrophages, dendritic cells, granulocytes and smooth muscle cells as well as in a variety of human tumors including colorectal, gastric, esophageal pancreatic, and thyroid carcinoma. However, unlike CD97, EMR2 is not found in those of CD97-positive tumor cells and is not expressed on lymphocytes but instead on monocytes, macrophages and granulocytes. CD97 has three known ligands: CD55, decay-accelerating factor for regulation of complement system; chondroitin sulfate, a glycosaminoglycan found in the extracellular matrix; and the integrin alpha5beta1, which play a role in angiogenesis. Although EMR2 does not effectively interact with CD55, the fourth EGF-like domain of this receptor binds to chondroitin sulfate to mediate cell attachment. Pssm-ID: 320555 [Multi-domain] Cd Length: 263 Bit Score: 61.97 E-value: 1.83e-10
|
|||||||||
7tmB2_BAI2 | cd15988 | brain-specific angiogenesis inhibitor 2, a group VII adhesion GPCR, member of the class B2 ... |
388-661 | 9.32e-10 | |||||
brain-specific angiogenesis inhibitor 2, a group VII adhesion GPCR, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Brain-specific angiogenesis inhibitors (BAI1-3) constitute the group VII of cell-adhesion receptors that have been implicated in vascularization of glioblastomas. They belong to the B2 subfamily of class B GPCRs, are predominantly expressed in the brain, and are only present in vertebrates. Three BAIs, like all adhesion receptors, are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. For example, BAI1 N-terminus contain an integrin-binding RGD (Arg-Gly-Asp) motif in addition to five thrombospondin type 1 repeats (TSRs), which are known to regulate the anti-angiogenic activity of thrombospondin-1, whereas BAI2 and BAI3 have four TSRs, but do not possess RGD motifs. The TSRs are functionally involved in cell attachment, activation of latent TGF-beta, inhibition of angiogenesis and endothelial cell migration. The TSRs of BAI1 mediates direct binding to phosphatidylserine, which enables both recognition and internalization of apoptotic cells by phagocytes. Thus, BAI1 functions as a phosphatidylserine receptor that forms a trimeric complex with ELMO and Dock180, leading to activation of Rac-GTPase which promotes the binding and phagocytosis of apoptotic cells. BAI3 can also interact with the ELMO-Dock180 complex to activate the Rac pathway and can also bind to secreted C1ql proteins of the C1Q complement family via its N-terminal TSRs. BAI3 and its ligands C1QL1 are highly expressed during synaptogenesis and are involved in synapse specificity. Moreover, BAI2 acts as a transcription repressor to regulate vascular endothelial growth factor (VEGF) expression through interaction with GA-binding protein gamma (GABP). The N-terminal extracellular domains of all three BAIs also contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain, which undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif to generate N- and C-terminal fragments (NTF and CTF), a putative hormone-binding domain (HBD), and multiple N-glycosylation sites. The C-terminus of each BAI subtype ends with a conserved Gln-Thr-Glu-Val (QTEV) motif known to interact with PDZ domain-containing proteins, but only BAI1 possesses a proline-rich region, which may be involved in protein-protein interactions. Pssm-ID: 320654 [Multi-domain] Cd Length: 291 Bit Score: 60.35 E-value: 9.32e-10
|
|||||||||
7tmB2_GPR97 | cd15442 | orphan adhesion receptor GPR97, member of the class B2 family of seven-transmembrane G ... |
392-652 | 6.50e-09 | |||||
orphan adhesion receptor GPR97, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR97 is an orphan receptor that has been classified into the group VIII of adhesion GPCRs. Other members of the Group VII include GPR56, GPR64, GPR112, GPR114, and GPR126. GPR97 is identified as a lymphatic adhesion receptor that is specifically expressed in lymphatic endothelium, but not in blood vascular endothelium, and is shown to regulate migration of lymphatic endothelial cells via the small GTPases RhoA and cdc42. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320558 [Multi-domain] Cd Length: 277 Bit Score: 57.50 E-value: 6.50e-09
|
|||||||||
7tmB2_BAI1 | cd15990 | brain-specific angiogenesis inhibitor 1, a group VII adhesion GPCR, member of the class B2 ... |
388-655 | 9.21e-09 | |||||
brain-specific angiogenesis inhibitor 1, a group VII adhesion GPCR, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Brain-specific angiogenesis inhibitors (BAI1-3) constitute the group VII of cell-adhesion receptors that have been implicated in vascularization of glioblastomas. They belong to the B2 subfamily of class B GPCRs, are predominantly expressed in the brain, and are only present in vertebrates. Three BAIs, like all adhesion receptors, are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. For example, BAI1 N-terminus contain an integrin-binding RGD (Arg-Gly-Asp) motif in addition to five thrombospondin type 1 repeats (TSRs), which are known to regulate the anti-angiogenic activity of thrombospondin-1, whereas BAI2 and BAI3 have four TSRs, but do not possess RGD motifs. The TSRs are functionally involved in cell attachment, activation of latent TGF-beta, inhibition of angiogenesis and endothelial cell migration. The TSRs of BAI1 mediates direct binding to phosphatidylserine, which enables both recognition and internalization of apoptotic cells by phagocytes. Thus, BAI1 functions as a phosphatidylserine receptor that forms a trimeric complex with ELMO and Dock180, leading to activation of Rac-GTPase which promotes the binding and phagocytosis of apoptotic cells. BAI3 can also interact with the ELMO-Dock180 complex to activate the Rac pathway and can also bind to secreted C1ql proteins of the C1Q complement family via its N-terminal TSRs. BAI3 and its ligands C1QL1 are highly expressed during synaptogenesis and are involved in synapse specificity. Moreover, BAI2 acts as a transcription repressor to regulate vascular endothelial growth factor (VEGF) expression through interaction with GA-binding protein gamma (GABP). The N-terminal extracellular domains of all three BAIs also contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain, which undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif to generate N- and C-terminal fragments (NTF and CTF), a putative hormone-binding domain (HBD), and multiple N-glycosylation sites. The C-terminus of each BAI subtype ends with a conserved Gln-Thr-Glu-Val (QTEV) motif known to interact with PDZ domain-containing proteins, but only BAI1 possesses a proline-rich region, which may be involved in protein-protein interactions. Pssm-ID: 320656 Cd Length: 267 Bit Score: 56.92 E-value: 9.21e-09
|
|||||||||
7tmB2_Latrophilin-1 | cd16007 | Latrophilin-1, member of the class B2 family of seven-transmembrane G protein-coupled ... |
388-659 | 1.66e-08 | |||||
Latrophilin-1, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Latrophilins (also called lectomedins or latrotoxin receptors) belong to Group I adhesion GPCRs, which also include ETL (EGF-TM7-latrophilin-related protein). These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320673 [Multi-domain] Cd Length: 258 Bit Score: 56.08 E-value: 1.66e-08
|
|||||||||
7tmB2_BAI3 | cd15989 | brain-specific angiogenesis inhibitor 3, a group VII adhesion GPCR, member of the class B2 ... |
388-564 | 2.20e-08 | |||||
brain-specific angiogenesis inhibitor 3, a group VII adhesion GPCR, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Brain-specific angiogenesis inhibitors (BAI1-3) constitute the group VII of cell-adhesion receptors that have been implicated in vascularization of glioblastomas. They belong to the B2 subfamily of class B GPCRs, are predominantly expressed in the brain, and are only present in vertebrates. Three BAIs, like all adhesion receptors, are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. For example, BAI1 N-terminus contain an integrin-binding RGD (Arg-Gly-Asp) motif in addition to five thrombospondin type 1 repeats (TSRs), which are known to regulate the anti-angiogenic activity of thrombospondin-1, whereas BAI2 and BAI3 have four TSRs, but do not possess RGD motifs. The TSRs are functionally involved in cell attachment, activation of latent TGF-beta, inhibition of angiogenesis and endothelial cell migration. The TSRs of BAI1 mediates direct binding to phosphatidylserine, which enables both recognition and internalization of apoptotic cells by phagocytes. Thus, BAI1 functions as a phosphatidylserine receptor that forms a trimeric complex with ELMO and Dock180, leading to activation of Rac-GTPase which promotes the binding and phagocytosis of apoptotic cells. BAI3 can also interact with the ELMO-Dock180 complex to activate the Rac pathway and can also bind to secreted C1ql proteins of the C1Q complement family via its N-terminal TSRs. BAI3 and its ligands C1QL1 are highly expressed during synaptogenesis and are involved in synapse specificity. Moreover, BAI2 acts as a transcription repressor to regulate vascular endothelial growth factor (VEGF) expression through interaction with GA-binding protein gamma (GABP). The N-terminal extracellular domains of all three BAIs also contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain, which undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif to generate N- and C-terminal fragments (NTF and CTF), a putative hormone-binding domain (HBD), and multiple N-glycosylation sites. The C-terminus of each BAI subtype ends with a conserved Gln-Thr-Glu-Val (QTEV) motif known to interact with PDZ domain-containing proteins, but only BAI1 possesses a proline-rich region, which may be involved in protein-protein interactions. Pssm-ID: 320655 [Multi-domain] Cd Length: 293 Bit Score: 56.23 E-value: 2.20e-08
|
|||||||||
7tmB2_GPR144 | cd15255 | orphan adhesion receptor GPR114, member of the class B2 family of seven-transmembrane G ... |
388-659 | 3.33e-08 | |||||
orphan adhesion receptor GPR114, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR144 is an orphan receptor that belongs to the group V adhesion-GPCRs together with GPR133. The function of GPR144 has not yet been characterized, whereas GPR133 is highly expressed in the pituitary gland and is coupled to the Gs protein, leading to activation of adenylyl cyclase pathway. Moreover, genetic variations in the GPR133 have been reported to be associated with adult height and heart rate. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS. Pssm-ID: 320383 [Multi-domain] Cd Length: 263 Bit Score: 55.24 E-value: 3.33e-08
|
|||||||||
7tmB2_EMR_Adhesion_II | cd15931 | EGF-like module receptors, group II adhesion GPCRs, member of class B2 family of ... |
388-649 | 3.79e-08 | |||||
EGF-like module receptors, group II adhesion GPCRs, member of class B2 family of seven-transmembrane G protein-coupled receptors; group II adhesion GPCRs, including the leukocyte cell-surface antigen CD97 and the epidermal growth factor (EGF)-module-containing, mucin-like hormone receptor (EMR1-4), are primarily expressed in cells of the immune system. All EGF-TM7 receptors, which belong to the B2 subfamily B2 of adhesion GPCRs, are members of group II, except for ETL (EGF-TM7-latrophilin related protein), which is classified into group I. Members of the EGF-TM7 receptors are characterized by the presence of varying numbers of N-terminal EGF-like domains, which play critical roles in ligand recognition and cell adhesion, linked by a stalk region to a class B seven-transmembrane domain. In the case of CD97, alternative splicing results in three isoforms possessing either three (EGF1,2,5), four (EGF1,2,3,5) or five (EGF1,2,3,4,5) EGF-like domains. On the other hand, EMR2 generates four isoforms possessing either two (EGF1,2), three (EGF1,2,5), four (EGF1,2,3,5) or five (EGF1,2,3,4,5) EGF-like domains. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. For example, CD97, which is involved in angiogenesis and the migration and invasion of tumor cells, has been shown to promote cell aggregation in a GPS proteolysis-dependent manner. CD97 is widely expressed on lymphocytes, monocytes, macrophages, dendritic cells, granulocytes and smooth muscle cells as well as in a variety of human tumors including colorectal, gastric, esophageal pancreatic, and thyroid carcinoma. EMR2 shares strong sequence homology with CD97, differing by only six amino acids. However, unlike CD97, EMR2 is not found in those of CD97-positive tumor cells and is not expressed on lymphocytes but instead on monocytes, macrophages and granulocytes. CD97 has three known ligands: CD55, decay-accelerating factor for regulation of complement system; chondroitin sulfate, a glycosaminoglycan found in the extracellular matrix; and the integrin alpha5beta1, which play a role in angiogenesis. Although EMR2 does not effectively interact with CD55, the fourth EGF-like domain of this receptor binds to chondroitin sulfate to mediate cell attachment. Pssm-ID: 320597 [Multi-domain] Cd Length: 262 Bit Score: 55.21 E-value: 3.79e-08
|
|||||||||
7tmE_cAMP_R_Slime_mold | cd14940 | slime mold cyclic AMP receptor, member of the class E family of seven-transmembrane G ... |
391-586 | 1.54e-07 | |||||
slime mold cyclic AMP receptor, member of the class E family of seven-transmembrane G protein-coupled receptors; This family represents the class E of seven-transmembrane G-protein coupled receptors found in soil-living amoebas, commonly referred to as slime molds. The class E family includes cAMP receptors (cAR1-4) and cAMP receptors-like proteins (CrlA-C) from Dictyostelium discoideum, and their highly homologous cAMP receptors (TasA and TasB) from Polysphondylium pallidum. So far, four subtypes of cAMP receptors (cAR1-4) have been identified that play an essential role in the detection and transmit of the periodic extracellular cAMP waves that regulate chemotactic cell movement during Dictyostelium development, from the unicellular amoeba aggregate into many multicellular slugs and then differentiate into a sporocarp, a fruiting body with cells specialized for different functions. These four subtypes differ in their expression levels and patterns during development. cAR1 is high-affinity receptor that is the first one to be expressed highly during early aggregation and continues to be expressed at low levels during later developmental stages. cAR1 detects extracellular cAMP and is coupled to G-alpha2 protein. Cells lacking cAR1 fail to aggregate, demonstrating that cAR1 is responsible for aggregation. During later aggregation the high-affinity cAR3 receptor is expressed at low levels. Nonetheless, cells lacking cAR3 do not show an obviously altered pattern of development and are still able to aggregate into fruiting bodies. In contrast, cAR2 and cAR4 are low affinity receptors expressed predominantly after aggregation in pre-stalk cells. cAR2 is essential for normal tip formation and deletion of the receptor arrests development at the mound stage. On the other hand, CAR4 regulates axial patterning and cellular differentiation, and deletion of the receptor results in defects during culmination. Furthermore, three cAMP receptor-like proteins (CrlA-C) were identified in Dictyostelium that show limited sequence similarity to the cAMP receptors. Of these CrlA is thought to be required for normal cell growth and tip formation in developing aggregates. Pssm-ID: 320094 [Multi-domain] Cd Length: 256 Bit Score: 53.12 E-value: 1.54e-07
|
|||||||||
7tmB2_Latrophilin_Adhesion_I | cd15252 | Latrophilins and similar receptors, group I adhesion GPCRs, member of class B2 family of ... |
388-659 | 1.14e-05 | |||||
Latrophilins and similar receptors, group I adhesion GPCRs, member of class B2 family of seven-transmembrane G protein-coupled receptors; Group I adhesion GPCRs consist of latrophilins (also called lectomedins or latrotoxin receptors) and ETL (EGF-TM7-latrophilin-related protein. These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320380 [Multi-domain] Cd Length: 257 Bit Score: 47.50 E-value: 1.14e-05
|
|||||||||
7tmB2_Latrophilin-2 | cd16006 | Latrophilin-2, member of the class B2 family of seven-transmembrane G protein-coupled ... |
388-648 | 1.38e-05 | |||||
Latrophilin-2, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Latrophilins (also called lectomedins or latrotoxin receptors) belong to Group I adhesion GPCRs, which also include ETL (EGF-TM7-latrophilin-related protein). These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320672 [Multi-domain] Cd Length: 258 Bit Score: 47.22 E-value: 1.38e-05
|
|||||||||
7tmB2_GPR116-like_Adhesion_VI | cd15932 | orphan GPR116 and related proteins, group IV adhesion GPCRs, member of the class B2 family of ... |
388-648 | 1.44e-05 | |||||
orphan GPR116 and related proteins, group IV adhesion GPCRs, member of the class B2 family of seven-transmembrane G protein-coupled receptors; group VI adhesion GPCRs consist of orphan receptors GPR110, GPR111, GPR113, GPR115, GPR116, and closely related proteins. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in ligand recognition as well as cell-cell adhesion and cell-matrix interactions, linked by a stalk region to a class B seven-transmembrane domain. GPR110 possesses a SEA box in the N-terminal has been identified as an oncogene over-expressed in lung and prostate cancer. GPR113 contains a hormone binding domain and one EGF (epidermal grown factor) domain. GPR112 has extremely long N-terminus (about 2,400 amino acids) containing a number of Ser/Thr-rich glycosylation sites and a pentraxin (PTX) domain. GPR116 has two C2-set immunoglobulin-like repeats, which is found in the members of the immunoglobulin superfamily of cell surface proteins, and a SEA (sea urchin sperm protein, enterokinase, and a grin)-box, which is present in the extracellular domain of the transmembrane mucin (MUC) family and known to enhance O-glycosylation. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. However, several adhesion GPCRs, including GPR 111, GPR115, and CELSR1, are predicted to be non-cleavable at the GAIN domain because of the lack of a consensus catalytic triad sequence (His-Leu-Ser/Thr) within their GPS. Pssm-ID: 320598 [Multi-domain] Cd Length: 268 Bit Score: 47.31 E-value: 1.44e-05
|
|||||||||
7tmB2_GPR125 | cd15999 | G protein-coupled receptor 125, member of the class B2 family of seven-transmembrane G ... |
421-563 | 1.64e-05 | |||||
G protein-coupled receptor 125, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR125 is an orphan receptor that has been classified as that belongs to the group III of adhesion GPCRs, which also includes orphan receptors GPR123 and GPR124. GPR125 directly interacts with dishevelled (Dvl) via its intracellular C-terminus, and together, GPR125 and Dvl recruit a subset of planar cell polarity (PCP) components into membrane subdomains, a prerequisite for activation of Wnt/PCP signaling. Thus, GPR125 influences the noncanonical WNT/PCP pathway, which does not involve beta-catenin, through interacting with and modulating the distribution of Dvl. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320665 Cd Length: 312 Bit Score: 47.55 E-value: 1.64e-05
|
|||||||||
7tmB2_CELSR3 | cd15993 | Cadherin EGF LAG seven-pass G-type receptor 3, member of the class B2 family of ... |
390-621 | 1.76e-05 | |||||
Cadherin EGF LAG seven-pass G-type receptor 3, member of the class B2 family of seven-transmembrane G protein-coupled receptors; The group IV adhesion GPCRs include the cadherin EGF LAG seven-pass G-type receptors (CELSRs) and their Drosophila homolog Flamingo (also known as Starry night). These receptors are also classified as that belongs to the EGF-TM7 group of subfamily B2 adhesion GPCRs, because they contain EGF-like domains. Functionally, the group IV receptors act as key regulators of many physiological processes such as endocrine cell differentiation, neuronal migration, dendrite growth, axon, guidance, lymphatic vessel and valve formation, and planar cell polarity (PCP) during embryonic development. Three mammalian orthologs of Flamingo, Celsr1-3, are widely expressed in the nervous system from embryonic development until the adult stage. Each Celsr exhibits different expression patterns in the developing brain, suggesting that they serve distinct functions. Mutations of CELSR1 cause neural tube defects in the nervous system, while mutations of CELSR2 are associated with coronary heart disease. Moreover, CELSR1 and several other PCP signaling molecules, such as dishevelled, prickle, frizzled, have been shown to be upregulated in B lymphocytes of chronic lymphocytic leukemia patients. Celsr3 is expressed in both the developing and adult mouse brain. It has been functionally implicated in proper neuronal migration and axon guidance in the CNS. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. In the case of CELSR/Flamingo/Starry night, their extracellular domains comprise nine cadherin repeats linked to a series of epidermal growth factor (EGF)-like and laminin globular (G)-like domains. The cadherin repeats contain sequence motifs that mediate calcium-dependent cell-cell adhesion by homophilic interactions. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320659 [Multi-domain] Cd Length: 254 Bit Score: 46.76 E-value: 1.76e-05
|
|||||||||
7tmB2_Latrophilin | cd15436 | Latrophilins, member of the class B2 family of seven-transmembrane G protein-coupled receptors; ... |
388-649 | 1.85e-05 | |||||
Latrophilins, member of the class B2 family of seven-transmembrane G protein-coupled receptors; Latrophilins (also called lectomedins or latrotoxin receptors) belong to Group I adhesion GPCRs, which also include ETL (EGF-TM7-latrophilin-related protein). These receptors are a member of the adhesion family (subclass B2) that belongs to the class B GPCRs. Three subtypes of latrophilins have been identified: LPH1 (latrophilin-1), LPH2, and LPH3. The latrophilin-1 is a brain-specific calcium-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin from the venom of the black widow spider that induces massive neurotransmitter release from sensory and motor neurons as well as endocrine cells, leading to nerve-terminal degeneration. Latrophilin-2 and -3, although sharing strong sequence homology to latrophilin-1, do not bind alpha-latrotoxin. While latrophilin-3 is also brain specific, latrophilin-2 is ubiquitously distributed. The endogenous ligands for these two receptors are unknown. ETL, a seven transmembrane receptor containing EGF-like repeats is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. The function of the ETL is unknown. All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. In addition, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320552 [Multi-domain] Cd Length: 258 Bit Score: 46.71 E-value: 1.85e-05
|
|||||||||
7tmB1_PACAP-R1 | cd15987 | pituitary adenylate cyclase-activating polypeptide type 1 receptor, member of the class B ... |
435-563 | 7.13e-05 | |||||
pituitary adenylate cyclase-activating polypeptide type 1 receptor, member of the class B family of seven-transmembrane G protein-coupled receptors; Pituitary adenylate cyclase-activating polypeptide type 1 receptor (PACAP-R1) is a member of the group of G protein-coupled receptors for structurally similar peptide hormones that also include secretin, growth-hormone-releasing hormone (GHRH), and vasoactive intestinal peptide (VIP). These receptors are classified into the subfamily B1 of class B GRCRs that consists of the classical hormone receptors and have been identified in all the vertebrates, from fishes to mammals, but are not present in plants, fungi, or prokaryotes. For all class B receptors, the large N-terminal extracellular domain plays a critical role in peptide hormone recognition. VIP and PACAP exert their effects through three G protein-coupled receptors, PACAP-R1, VIP-R1 (vasoactive intestinal receptor type 1, also known as VPAC1) and VIP-R2 (or VPAC2). PACAP-R1 binds only PACAP with high affinity, whereas VIP-R1 and -R2 specifically bind and respond to both VIP and PACAP. VIP and PACAP and their receptors are widely expressed in the brain and periphery. They are upregulated in neurons and immune cells in responses to CNS injury and/or inflammation and exert potent anti-inflammatory effects, as well as play important roles in the control of circadian rhythms and stress responses, among many others. PACAP-R1 is preferentially coupled to a stimulatory G(s) protein, which leads to the activation of adenylate cyclase and thereby increases in intracellular cAMP level. Pssm-ID: 320653 [Multi-domain] Cd Length: 268 Bit Score: 45.34 E-value: 7.13e-05
|
|||||||||
7tmB2_CELSR2 | cd15992 | Cadherin EGF LAG seven-pass G-type receptor 2, member of the class B2 family of ... |
396-651 | 9.73e-05 | |||||
Cadherin EGF LAG seven-pass G-type receptor 2, member of the class B2 family of seven-transmembrane G protein-coupled receptors; The group IV adhesion GPCRs include the cadherin EGF LAG seven-pass G-type receptors (CELSRs) and their Drosophila homolog Flamingo (also known as Starry night). These receptors are also classified as that belongs to the EGF-TM7 group of subfamily B2 adhesion GPCRs, because they contain EGF-like domains. Functionally, the group IV receptors act as key regulators of many physiological processes such as endocrine cell differentiation, neuronal migration, dendrite growth, axon, guidance, lymphatic vessel and valve formation, and planar cell polarity (PCP) during embryonic development. Three mammalian orthologs of Flamingo, Celsr1-3, are widely expressed in the nervous system from embryonic development until the adult stage. Each Celsr exhibits different expression patterns in the developing brain, suggesting that they serve distinct functions. Mutations of CELSR1 cause neural tube defects in the nervous system, while mutations of CELSR2 are associated with coronary heart disease. Moreover, CELSR1 and several other PCP signaling molecules, such as dishevelled, prickle, frizzled, have been shown to be upregulated in B lymphocytes of chronic lymphocytic leukemia patients. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. In the case of CELSR/Flamingo/Starry night, their extracellular domains comprise nine cadherin repeats linked to a series of epidermal growth factor (EGF)-like and laminin globular (G)-like domains. The cadherin repeats contain sequence motifs that mediate calcium-dependent cell-cell adhesion by homophilic interactions. Moreover, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320658 Cd Length: 255 Bit Score: 44.81 E-value: 9.73e-05
|
|||||||||
7tmB2_GPR114 | cd15443 | orphan adhesion receptor GPR114, member of the class B2 family of seven-transmembrane G ... |
446-655 | 1.21e-04 | |||||
orphan adhesion receptor GPR114, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR114 is an orphan receptor that has been classified as that belongs to the Group VIII of adhesion GPCRs. Other members of the Group VII include GPR56, GPR64, GPR97, GPR112, and GPR126. GPR114 is mainly found in granulocytes (polymorphonuclear leukocytes), and GPR114-transfected cells induced an increase in cAMP levels via coupling to G(s) protein. The adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320559 [Multi-domain] Cd Length: 268 Bit Score: 44.36 E-value: 1.21e-04
|
|||||||||
7tmB1_Secretin_R-like | cd15930 | secretin receptor-like group of hormone receptors, member of the class B family of ... |
446-563 | 1.39e-04 | |||||
secretin receptor-like group of hormone receptors, member of the class B family of seven-transmembrane G protein-coupled receptors; This group represents G protein-coupled receptors for structurally similar peptide hormones that include secretin, growth-hormone-releasing hormone (GHRH), pituitary adenylate cyclase activating polypeptide (PACAP), and vasoactive intestinal peptide (VIP). These receptors are classified into the subfamily B1 of class B GRCRs that consists of the classical hormone receptors and have been identified in all the vertebrates, from fishes to mammals, but are not present in plants, fungi, or prokaryotes. For all class B receptors, the large N-terminal extracellular domain plays a critical role in peptide hormone recognition. Secretin, a polypeptide secreted by entero-endocrine S cells in the small intestine, is involved in maintaining body fluid balance. This polypeptide regulates the secretion of bile and bicarbonate into the duodenum from the pancreatic and biliary ducts, as well as regulates the duodenal pH by the control of gastric acid secretion. Studies with secretin receptor-null mice indicate that secretin plays a role in regulating renal water reabsorption. Secretin mediates its biological actions by elevating intracellular cAMP via G protein-coupled secretin receptors, which are expressed in the brain, pancreas, stomach, kidney, and liver. GHRHR is a specific receptor for the growth hormone-releasing hormone (GHRH) that controls the synthesis and release of growth hormone (GH) from the anterior pituitary somatotrophs. Mutations in the gene encoding GHRHR have been connected to isolated growth hormone deficiency (IGHD), a short-stature condition caused by deficient production of GH or lack of GH action. VIP and PACAP exert their effects through three G protein-coupled receptors, PACAP-R1, VIP-R1 (vasoactive intestinal receptor type 1, also known as VPAC1) and VIP-R2 (or VPAC2). PACAP-R1 binds only PACAP with high affinity, whereas VIP-R1 and -R2 specifically bind and respond to both VIP and PACAP. VIP and PACAP and their receptors are widely expressed in the brain and periphery. They are upregulated in neurons and immune cells in responses to CNS injury and/or inflammation and exert potent anti-inflammatory effects, as well as play important roles in the control of circadian rhythms and stress responses, among many others. All B1 subfamily GPCRs are able to increase intracellular cAMP levels by coupling to adenylate cyclase via a stimulatory Gs protein. However, depending on its cellular location, some members of subfamily B1 are also capable of coupling to additional G proteins such as G(i/o) and/or G(q) proteins, thereby leading to activation of phospholipase C and intracellular calcium influx. Pssm-ID: 320596 [Multi-domain] Cd Length: 268 Bit Score: 44.34 E-value: 1.39e-04
|
|||||||||
7tmB1_DH_R | cd15263 | insect diuretic hormone receptors, member of the class B family of seven-transmembrane G ... |
385-566 | 2.35e-04 | |||||
insect diuretic hormone receptors, member of the class B family of seven-transmembrane G protein-coupled receptors; This group includes G protein-coupled receptors that specifically bind to insect diuretic hormones found in Manduca sexta (moth) and Acheta domesticus (the house cricket), among others. Insect diuretic hormone and their GPCRs play critical roles in the regulation of water and ion balance. Thus they are attractive targets for developing new insecticides. Activation of the diuretic hormone receptors stimulate adenylate cyclase, thereby increasing cAMP levels in Malpighian tube. They belong to the B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, which includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of the B1 subfamily preferentially couple to G proteins of Gs family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. Pssm-ID: 320391 [Multi-domain] Cd Length: 272 Bit Score: 43.51 E-value: 2.35e-04
|
|||||||||
Mth_Ecto | cd00251 | The ectodomain of Methuselah (Mth); Mth mutants have a 35% increase in average lifespan and ... |
247-355 | 3.34e-04 | |||||
The ectodomain of Methuselah (Mth); Mth mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage; The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family; Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. Pssm-ID: 119403 Cd Length: 176 Bit Score: 41.89 E-value: 3.34e-04
|
|||||||||
7tmB2_ETL | cd15437 | Epidermal Growth Factor, latrophilin and seven transmembrane domain-containing protein 1; ... |
388-664 | 5.03e-04 | |||||
Epidermal Growth Factor, latrophilin and seven transmembrane domain-containing protein 1; member of the class B2 family of seven-transmembrane G protein-coupled receptors; ETL (EGF-TM7-latrophilin-related protein) belongs to Group I adhesion GPCRs, which also include latrophilins (also called lectomedins or latrotoxin receptors). All adhesion GPCRs possess large N-terminal extracellular domains containing multiple structural motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, coupled to a seven-transmembrane domain. ETL, for instance, contains EGF-like repeats, which also present in other EGF-TM7 adhesion GPCRs, such as Cadherin EGF LAG seven-pass G-type receptors (CELSR1-3), EGF-like module receptors (EMR1-3), CD97, and Flamingo. ETL is highly expressed in heart, where developmentally regulated, as well as in normal smooth cells. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR-autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320553 [Multi-domain] Cd Length: 258 Bit Score: 42.56 E-value: 5.03e-04
|
|||||||||
7tmB2_GPR123 | cd16000 | G protein-coupled receptor 123, member of the class B2 family of seven-transmembrane G ... |
445-654 | 6.05e-04 | |||||
G protein-coupled receptor 123, member of the class B2 family of seven-transmembrane G protein-coupled receptors; GPR123 is an orphan receptor that has been classified as that belongs to the group III of adhesion GPCRs, and also includes orphan receptors GPR124 and GPR125. GPR123 is predominantly expressed in the CNS including thalamus, brain stem and regions containing large pyramidal cells, yet its biological function remains to be determined. Adhesion receptors are characterized by the presence of large N-terminal extracellular domains containing multiple adhesion motifs, which play critical roles in cell-cell adhesion and cell-matrix interactions, that are coupled to a class B seven-transmembrane domain. Furthermore, almost all adhesion receptors, except GPR123, contain an evolutionarily conserved GPCR- autoproteolysis inducing (GAIN) domain that undergoes autoproteolytic processing at the GPCR proteolysis site (GPS) motif located immediately N-terminal to the first transmembrane region, to generate N- and C-terminal fragments (NTF and CTF), which may serve important biological functions. Pssm-ID: 320666 [Multi-domain] Cd Length: 275 Bit Score: 42.25 E-value: 6.05e-04
|
|||||||||
7tmF_FZD6 | cd15032 | class F frizzled subfamily 6, member of 7-transmembrane G protein-coupled receptors; This ... |
365-515 | 1.76e-03 | |||||
class F frizzled subfamily 6, member of 7-transmembrane G protein-coupled receptors; This group includes subfamily 6 of the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate class of GPCRs, and its closely related proteins. This class F protein family consists of 10 isoforms (FZD1-10) in mammals. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The conserved cytoplasmic motif of FZD, Lys-Thr-X-X-X-Trp, is required for activation of the WNT/beta-catenin pathway, and for membrane localization and phosphorylation of Dsh (dishevelled) protein, a key component of the WNT pathway that relays the WNT signals from the activated receptor to downstream effector proteins. The WNT pathway plays a critical role in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. Pssm-ID: 320160 Cd Length: 321 Bit Score: 40.99 E-value: 1.76e-03
|
|||||||||
7tmB1_secretin | cd15275 | secretin receptor, member of the class B family of seven-transmembrane G protein-coupled ... |
385-563 | 1.83e-03 | |||||
secretin receptor, member of the class B family of seven-transmembrane G protein-coupled receptors; Secretin receptor is a member of the group of G protein-coupled receptors for structurally similar peptide hormones that also include vasoactive intestinal peptide (VIP), growth-hormone-releasing hormone (GHRH), and pituitary adenylate cyclase activating polypeptide (PACAP). These receptors are classified into the subfamily B1 of class B GRCRs that consists of the classical hormone receptors, and have been identified in all the vertebrates, from fishes to mammals, but are not present in plants, fungi, or prokaryotes. For all class B receptors, the large N-terminal extracellular domain plays a critical role in peptide hormone recognition. Secretin, a polypeptide secreted by entero-endocrine S cells in the small intestine, is involved in maintaining body fluid balance. This polypeptide regulates the secretion of bile and bicarbonate into the duodenum from the pancreatic and biliary ducts, as well as regulates the duodenal pH by the control of gastric acid secretion. Studies with secretin receptor-null mice indicate that secretin plays a role in regulating renal water reabsorption. Secretin mediates its biological actions by elevating intracellular cAMP via G protein-coupled secretin receptor, which is expressed in the brain, pancreas, stomach, kidney, and liver. Pssm-ID: 320403 [Multi-domain] Cd Length: 271 Bit Score: 40.88 E-value: 1.83e-03
|
|||||||||
Methuselah_N | pfam06652 | Methuselah N-terminus; This family represents the N-terminal region of the Drosophila specific ... |
247-355 | 5.78e-03 | |||||
Methuselah N-terminus; This family represents the N-terminal region of the Drosophila specific Methuselah protein. Drosophila Methuselah (Mth) mutants have a 35% increase in average lifespan and increased resistance to several forms of stress, including heat, starvation, and oxidative damage. The protein affected by this mutation is related to G protein-coupled receptors of the secretin receptor family. Mth, like secretin receptor family members, has a large N-terminal ectodomain, which may constitute the ligand binding site. This family is found in conjunction with pfam00002. Pssm-ID: 429053 Cd Length: 179 Bit Score: 38.39 E-value: 5.78e-03
|
|||||||||
7tmB1_hormone_R | cd15041 | The subfamily B1 of hormone receptors (secretin-like), member of the class B family ... |
441-652 | 6.05e-03 | |||||
The subfamily B1 of hormone receptors (secretin-like), member of the class B family seven-transmembrane G protein-coupled receptors; The B1 subfamily of class B GPCRs, also referred to as secretin-like receptor family, includes receptors for polypeptide hormones of 27-141 amino-acid residues such as secretin, glucagon, glucagon-like peptide (GLP), calcitonin gene-related peptide, parathyroid hormone (PTH), and corticotropin-releasing factor. These receptors contain the large N-terminal extracellular domain (ECD), which plays a critical role in hormone recognition by binding to the C-terminal portion of the peptide. On the other hand, the N-terminal segment of the hormone induces receptor activation by interacting with the receptor transmembrane domains and connecting extracellular loops, triggering intracellular signaling pathways. All members of this subfamily preferentially couple to G proteins of G(s) family, which positively stimulate adenylate cyclase, leading to increased intracellular cAMP formation and calcium influx. Moreover, the B1 subfamily receptors play key roles in hormone homeostasis and are promising drug targets in various human diseases including diabetes, osteoporosis, obesity, neurodegenerative conditions (Alzheimer###s and Parkinson's), cardiovascular disease, migraine, and psychiatric disorders (anxiety, depression). Furthermore, the subfamilies B2 and B3 consist of receptors that are capable of interacting with epidermal growth factors (EGF) and the Drosophila melanogaster Methuselah gene product (Mth), respectively. The class B GPCRs have been identified in all the vertebrates, from fishes to mammals, as well as invertebrates including Caenorhabditis elegans and Drosophila melanogaster, but are not present in plants, fungi, or prokaryotes. Pssm-ID: 341321 [Multi-domain] Cd Length: 273 Bit Score: 39.13 E-value: 6.05e-03
|
|||||||||
7tmB1_GHRHR | cd15270 | growth-hormone-releasing hormone receptor, member of the class B family of seven-transmembrane ... |
446-563 | 6.67e-03 | |||||
growth-hormone-releasing hormone receptor, member of the class B family of seven-transmembrane G protein-coupled receptors; Growth hormone-releasing hormone receptor (GHRHR) is a member of the group of G protein-coupled receptors for structurally similar peptide hormones that also include secretin, pituitary adenylate cyclase activating polypeptide (PACAP), and vasoactive intestinal peptide. These receptors are classified into the subfamily B1 of class B GRCRs that consists of the classical hormone receptors and have been identified in all the vertebrates, from fishes to mammals, but are not present in plants, fungi, or prokaryotes. For all class B receptors, the large N-terminal extracellular domain plays a critical role in peptide hormone recognition. GHRHR is a specific receptor for the growth hormone-releasing hormone (GHRH) that controls the synthesis and release of growth hormone (GH) from the anterior pituitary somatotrophs. Mutations in the gene encoding GHRHR have been connected to isolated growth hormone deficiency (IGHD), a short-stature condition caused by deficient production of GH or lack of GH action. GHRH is preferentially coupled to a stimulatory G(s) protein, which leads to the activation of adenylate cyclase and thereby increases in intracellular cAMP level. GHRHR is found in mammals as well as zebrafish and chicken, whereas the GHRHR type 2, an ortholog of the GHRHR, has only been identified in ray-finned fish, chicken and Xenopus. Xenopus laevis GHRHR2 has been shown to interact with both endogenous GHRH and PACAP-related peptide (PRP). Pssm-ID: 320398 [Multi-domain] Cd Length: 268 Bit Score: 39.01 E-value: 6.67e-03
|
|||||||||
7tmF_SMO_homolog | cd15030 | class F smoothened family membrane region, a homolog of frizzled receptors; This group ... |
414-575 | 7.24e-03 | |||||
class F smoothened family membrane region, a homolog of frizzled receptors; This group represents smoothened (SMO), a transmembrane G protein-coupled receptor that acts as the transducer of the hedgehog (HH) signaling pathway. SMO is activated by the hedgehog (HH) family of proteins acting on the 12-transmembrane domain receptor patched (PTCH), which constitutively inhibits SMO. Thus, in the absence of HH proteins, PTCH inhibits SMO signaling. On the other hand, binding of HH to the PTCH receptor activates its internalization and degradation, thereby releasing the PTCH inhibition of SMO. This allows SMO to trigger intracellular signaling and the subsequent activation of the Gli family of zinc finger transcriptional factors and induction of HH target gene expression (PTCH, Gli1, cyclin, Bcl-2, etc). SMO is closely related to the frizzled (FZD) family of seven transmembrane-spanning proteins, which constitute a novel and separate family of G-protein coupled receptors. The FZDs are activated by the wingless/int-1 (WNT) family of secreted lipoglycoproteins and preferentially couple to stimulatory G proteins of the Gs family, which activate adenylate cyclase, but can also couple to G proteins of the Gi/Gq families. In the WNT/beta-catenin signaling pathway, the WNT ligand binds to FZD and a lipoprotein receptor-related protein (LRP) co-receptor. This leads to the stabilization and translocation of beta-catenin to the nucleus, where it induces the activation of TCF/LEF family transcription factors. The WNT and HH signaling pathways play critical roles in many developmental processes, such as cell-fate determination, cell proliferation, neural patterning, stem cell renewal, tissue homeostasis and repair, and tumorigenesis, among many others. Pssm-ID: 320158 Cd Length: 331 Bit Score: 39.20 E-value: 7.24e-03
|
|||||||||
Blast search parameters | ||||
|