NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|29654811|ref|NP_820503|]
View 

glutaredoxin [Coxiella burnetii RSA 493]

Protein Classification

glutaredoxin( domain architecture ID 10130681)

glutathione dependent reductase glutaredoxin

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
GRX_GRXb_1_3_like cd03418
Glutaredoxin (GRX) family, GRX bacterial class 1 and 3 (b_1_3)-like subfamily; composed of ...
3-75 2.43e-44

Glutaredoxin (GRX) family, GRX bacterial class 1 and 3 (b_1_3)-like subfamily; composed of bacterial GRXs, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH -> GSH reductase -> GSH -> GRX -> protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes are known including E. coli GRX1 and GRX3, which are members of this subfamily.


:

Pssm-ID: 239510 [Multi-domain]  Cd Length: 75  Bit Score: 137.33  E-value: 2.43e-44
                       10        20        30        40        50        60        70
               ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 29654811  3 KIEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSEGRRTVPQIFINGRGIGGFDELWELEQ 75
Cdd:cd03418  1 KVEIYTKPNCPYCVRAKALLDKKGVDYEEIDVDGDPALREEMINRSGGRRTVPQIFIGDVHIGGCDDLYALER 73
 
Name Accession Description Interval E-value
GRX_GRXb_1_3_like cd03418
Glutaredoxin (GRX) family, GRX bacterial class 1 and 3 (b_1_3)-like subfamily; composed of ...
3-75 2.43e-44

Glutaredoxin (GRX) family, GRX bacterial class 1 and 3 (b_1_3)-like subfamily; composed of bacterial GRXs, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH -> GSH reductase -> GSH -> GRX -> protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes are known including E. coli GRX1 and GRX3, which are members of this subfamily.


Pssm-ID: 239510 [Multi-domain]  Cd Length: 75  Bit Score: 137.33  E-value: 2.43e-44
                       10        20        30        40        50        60        70
               ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 29654811  3 KIEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSEGRRTVPQIFINGRGIGGFDELWELEQ 75
Cdd:cd03418  1 KVEIYTKPNCPYCVRAKALLDKKGVDYEEIDVDGDPALREEMINRSGGRRTVPQIFIGDVHIGGCDDLYALER 73
GRX_bact TIGR02181
Glutaredoxin, GrxC family; Glutaredoxins are thioltransferases (disulfide reductases) which ...
4-83 6.45e-39

Glutaredoxin, GrxC family; Glutaredoxins are thioltransferases (disulfide reductases) which utilize glutathione and NADPH as cofactors. Oxidized glutathione is regenerated by glutathione reductase. Together these components compose the glutathione system. Glutaredoxins utilize the CXXC motif common to thioredoxins and are involved in multiple cellular processes including protection from redox stress, reduction of critical enzymes such as ribonucleotide reductase and the generation of reduced sulfur for iron sulfur cluster formation. Glutaredoxins are capable of reduction of mixed disulfides of glutathione as well as the formation of glutathione mixed disulfides. This family of glutaredoxins includes the E. coli protein GrxC (Grx3) which appears to have a secondary role in reducing ribonucleotide reductase (in the absence of GrxA) possibly indicating a role in the reduction of other protein disulfides. [Energy metabolism, Electron transport]


Pssm-ID: 274017 [Multi-domain]  Cd Length: 79  Bit Score: 123.91  E-value: 6.45e-39
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 29654811    4 IEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSeGRRTVPQIFINGRGIGGFDELWELEQSKKLDELL 83
Cdd:TIGR02181  1 VTIYTKPYCPYCTRAKALLSSKGVTFTEIRVDGDPALRDEMMQRS-GRRTVPQIFIGDVHVGGCDDLYALDREGKLDPLL 79
PRK10638 PRK10638
glutaredoxin 3; Provisional
1-84 5.78e-35

glutaredoxin 3; Provisional


Pssm-ID: 182607 [Multi-domain]  Cd Length: 83  Bit Score: 113.76  E-value: 5.78e-35
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 29654811   1 MAKIEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSeGRRTVPQIFINGRGIGGFDELWELEQSKKLD 80
Cdd:PRK10638  1 MANVEIYTKATCPFCHRAKALLNSKGVSFQEIPIDGDAAKREEMIKRS-GRTTVPQIFIDAQHIGGCDDLYALDARGGLD 79

                ....
gi 29654811  81 ELLK 84
Cdd:PRK10638 80 PLLK 83
GrxC COG0695
Glutaredoxin [Posttranslational modification, protein turnover, chaperones];
3-84 2.38e-32

Glutaredoxin [Posttranslational modification, protein turnover, chaperones];


Pssm-ID: 440459 [Multi-domain]  Cd Length: 74  Bit Score: 106.82  E-value: 2.38e-32
                       10        20        30        40        50        60        70        80
               ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 29654811  3 KIEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSeGRRTVPQIFINGRGIGGFDElweleqsKKLDEL 82
Cdd:COG0695  1 KVTLYTTPGCPYCARAKRLLDEKGIPYEEIDVDEDPEAREELRERS-GRRTVPVIFIGGEHLGGFDE-------GELDAL 72

               ..
gi 29654811 83 LK 84
Cdd:COG0695 73 LA 74
Glutaredoxin pfam00462
Glutaredoxin;
4-64 3.71e-25

Glutaredoxin;


Pssm-ID: 425695 [Multi-domain]  Cd Length: 60  Bit Score: 88.33  E-value: 3.71e-25
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 29654811    4 IEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSeGRRTVPQIFINGRGI 64
Cdd:pfam00462  1 VVLYTKPTCPFCKRAKRLLKSLGVDFEEIDVDEDPEIREELKELS-GWPTVPQVFIDGEHI 60
Uxx_star NF041212
Uxx-star family glutaredoxin-like (seleno)protein; A number of proteins with glutaredoxin-like ...
4-68 1.29e-15

Uxx-star family glutaredoxin-like (seleno)protein; A number of proteins with glutaredoxin-like folds, a length of about 75 amino acids, and a CxxC, C/UxxT, or CxxS motif near the N-terminus end with a UXX-COOH motif. That final motif typically is missed during coding region feature prediction by genome annotation pipelines. This HMM covers proteins from several distinctive families with this feature. The seed alignment illustrates the final selenocysteine or aligned Cys or Ser residues, but the HMM also hits proteins that lack an equivalent motif at the C-terminus. This C-terminal selenocysteine-containing motif has not yet been described in the literature.


Pssm-ID: 469116 [Multi-domain]  Cd Length: 70  Bit Score: 64.40  E-value: 1.29e-15
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 29654811   4 IEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSEGRRTVPQIFINGRGIGGFD 68
Cdd:NF041212  1 VVIYTKPGCPYCAAAKEDLARRGIPFEEIDVSKDPEALEEMLRLTGGERIVPVIVEGGEVTVGFG 65
 
Name Accession Description Interval E-value
GRX_GRXb_1_3_like cd03418
Glutaredoxin (GRX) family, GRX bacterial class 1 and 3 (b_1_3)-like subfamily; composed of ...
3-75 2.43e-44

Glutaredoxin (GRX) family, GRX bacterial class 1 and 3 (b_1_3)-like subfamily; composed of bacterial GRXs, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH -> GSH reductase -> GSH -> GRX -> protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes are known including E. coli GRX1 and GRX3, which are members of this subfamily.


Pssm-ID: 239510 [Multi-domain]  Cd Length: 75  Bit Score: 137.33  E-value: 2.43e-44
                       10        20        30        40        50        60        70
               ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 29654811  3 KIEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSEGRRTVPQIFINGRGIGGFDELWELEQ 75
Cdd:cd03418  1 KVEIYTKPNCPYCVRAKALLDKKGVDYEEIDVDGDPALREEMINRSGGRRTVPQIFIGDVHIGGCDDLYALER 73
GRX_bact TIGR02181
Glutaredoxin, GrxC family; Glutaredoxins are thioltransferases (disulfide reductases) which ...
4-83 6.45e-39

Glutaredoxin, GrxC family; Glutaredoxins are thioltransferases (disulfide reductases) which utilize glutathione and NADPH as cofactors. Oxidized glutathione is regenerated by glutathione reductase. Together these components compose the glutathione system. Glutaredoxins utilize the CXXC motif common to thioredoxins and are involved in multiple cellular processes including protection from redox stress, reduction of critical enzymes such as ribonucleotide reductase and the generation of reduced sulfur for iron sulfur cluster formation. Glutaredoxins are capable of reduction of mixed disulfides of glutathione as well as the formation of glutathione mixed disulfides. This family of glutaredoxins includes the E. coli protein GrxC (Grx3) which appears to have a secondary role in reducing ribonucleotide reductase (in the absence of GrxA) possibly indicating a role in the reduction of other protein disulfides. [Energy metabolism, Electron transport]


Pssm-ID: 274017 [Multi-domain]  Cd Length: 79  Bit Score: 123.91  E-value: 6.45e-39
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 29654811    4 IEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSeGRRTVPQIFINGRGIGGFDELWELEQSKKLDELL 83
Cdd:TIGR02181  1 VTIYTKPYCPYCTRAKALLSSKGVTFTEIRVDGDPALRDEMMQRS-GRRTVPQIFIGDVHVGGCDDLYALDREGKLDPLL 79
PRK10638 PRK10638
glutaredoxin 3; Provisional
1-84 5.78e-35

glutaredoxin 3; Provisional


Pssm-ID: 182607 [Multi-domain]  Cd Length: 83  Bit Score: 113.76  E-value: 5.78e-35
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 29654811   1 MAKIEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSeGRRTVPQIFINGRGIGGFDELWELEQSKKLD 80
Cdd:PRK10638  1 MANVEIYTKATCPFCHRAKALLNSKGVSFQEIPIDGDAAKREEMIKRS-GRTTVPQIFIDAQHIGGCDDLYALDARGGLD 79

                ....
gi 29654811  81 ELLK 84
Cdd:PRK10638 80 PLLK 83
GrxC COG0695
Glutaredoxin [Posttranslational modification, protein turnover, chaperones];
3-84 2.38e-32

Glutaredoxin [Posttranslational modification, protein turnover, chaperones];


Pssm-ID: 440459 [Multi-domain]  Cd Length: 74  Bit Score: 106.82  E-value: 2.38e-32
                       10        20        30        40        50        60        70        80
               ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 29654811  3 KIEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSeGRRTVPQIFINGRGIGGFDElweleqsKKLDEL 82
Cdd:COG0695  1 KVTLYTTPGCPYCARAKRLLDEKGIPYEEIDVDEDPEAREELRERS-GRRTVPVIFIGGEHLGGFDE-------GELDAL 72

               ..
gi 29654811 83 LK 84
Cdd:COG0695 73 LA 74
GRX_family cd02066
Glutaredoxin (GRX) family; composed of GRX, approximately 10 kDa in size, and proteins ...
3-75 5.27e-29

Glutaredoxin (GRX) family; composed of GRX, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH -> GSH reductase -> GSH -> GRX -> protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes are known including human GRX1 and GRX2, as well as E. coli GRX1 and GRX3, which are members of this family. E. coli GRX2, however, is a 24-kDa protein that belongs to the GSH S-transferase (GST) family.


Pssm-ID: 239017 [Multi-domain]  Cd Length: 72  Bit Score: 98.31  E-value: 5.27e-29
                       10        20        30        40        50        60        70
               ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 29654811  3 KIEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSeGRRTVPQIFINGRGIGGFDELWELEQ 75
Cdd:cd02066  1 KVVVFSKSTCPYCKRAKRLLESLGIEFEEIDILEDGELREELKELS-GWPTVPQIFINGEFIGGYDDLKALHE 72
Glutaredoxin pfam00462
Glutaredoxin;
4-64 3.71e-25

Glutaredoxin;


Pssm-ID: 425695 [Multi-domain]  Cd Length: 60  Bit Score: 88.33  E-value: 3.71e-25
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|.
gi 29654811    4 IEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSeGRRTVPQIFINGRGI 64
Cdd:pfam00462  1 VVLYTKPTCPFCKRAKRLLKSLGVDFEEIDVDEDPEIREELKELS-GWPTVPQVFIDGEHI 60
GRX_GRXh_1_2_like cd03419
Glutaredoxin (GRX) family, GRX human class 1 and 2 (h_1_2)-like subfamily; composed of ...
12-82 3.07e-20

Glutaredoxin (GRX) family, GRX human class 1 and 2 (h_1_2)-like subfamily; composed of proteins similar to human GRXs, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH -> GSH reductase -> GSH -> GRX -> protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes are known including human GRX1 and GRX2, which are members of this subfamily. Also included in this subfamily are the N-terminal GRX domains of proteins similar to human thioredoxin reductase 1 and 3.


Pssm-ID: 239511 [Multi-domain]  Cd Length: 82  Bit Score: 76.42  E-value: 3.07e-20
                       10        20        30        40        50        60        70
               ....*....|....*....|....*....|....*....|....*....|....*....|....*....|...
gi 29654811 12 CPYCVRAKALLDRKGLDYMEIRIDEAPEKRD--EMLSRSEGRRTVPQIFINGRGIGGFDELWELEQSKKLDEL 82
Cdd:cd03419 10 CPYCKRAKSLLKELGVKPAVVELDQHEDGSEiqDYLQELTGQRTVPNVFIGGKFIGGCDDLMALHKSGKLVKL 82
GlrX_YruB TIGR02196
Glutaredoxin-like protein, YruB-family; This glutaredoxin-like protein family contains the ...
3-84 7.16e-20

Glutaredoxin-like protein, YruB-family; This glutaredoxin-like protein family contains the conserved CxxC motif and includes the Clostridium pasteurianum protein YruB which has been cloned from a rubredoxin operon. Somewhat related to NrdH, it is unknown whether this protein actually interacts with glutathione/glutathione reducatase, or, like NrdH, some other reductant system.


Pssm-ID: 274027 [Multi-domain]  Cd Length: 74  Bit Score: 75.49  E-value: 7.16e-20
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 29654811    3 KIEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSeGRRTVPQIFINGRGIGGFDElweleqsKKLDEL 82
Cdd:TIGR02196  1 KVKVYTTPWCPPCVKAKEYLTSKGVAFEEIDVEKDAAAREELLKVY-GQRGVPVIVIGHKIVVGFDP-------EKLDQL 72

                 ..
gi 29654811   83 LK 84
Cdd:TIGR02196 73 LN 74
GRX_euk TIGR02180
Glutaredoxin; Glutaredoxins are thioltransferases (disulfide reductases) which utilize ...
12-83 3.39e-19

Glutaredoxin; Glutaredoxins are thioltransferases (disulfide reductases) which utilize glutathione and NADPH as cofactors. Oxidized glutathione is regenerated by glutathione reductase. Together these components compose the glutathione system. Glutaredoxins utilize the CXXC motif common to thioredoxins and are involved in multiple cellular processes including protection from redox stress, reduction of critical enzymes such as ribonucleotide reductase and the generation of reduced sulfur for iron sulfur cluster formation. Glutaredoxins are capable of reduction of mixed disulfides of glutathione as well as the formation of glutathione mixed disulfides. This model represents eukaryotic glutaredoxins and includes sequences from fungi, plants and metazoans as well as viruses.


Pssm-ID: 274016 [Multi-domain]  Cd Length: 83  Bit Score: 73.82  E-value: 3.39e-19
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 29654811   12 CPYCVRAKALLDRKGLDYMEI-RIDEAPEKRD--EMLSRSEGRRTVPQIFINGRGIGGFDELWELEQSKKLDELL 83
Cdd:TIGR02180  9 CPYCKKAKEILAKLNVKPYEVvELDQLSNGSEiqDYLEEITGQRTVPNIFINGKFIGGCSDLLALYKNGKLAELL 83
GlrX-dom TIGR02190
Glutaredoxin-family domain; This C-terminal domain with homology to glutaredoxin is fused to ...
4-70 1.04e-18

Glutaredoxin-family domain; This C-terminal domain with homology to glutaredoxin is fused to an N-terminal peroxiredoxin-like domain.


Pssm-ID: 131245 [Multi-domain]  Cd Length: 79  Bit Score: 72.56  E-value: 1.04e-18
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 29654811    4 IEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEapEKRDEMLSRSEGRRTVPQIFINGRGIGGFDEL 70
Cdd:TIGR02190 10 VVVFTKPGCPFCAKAKATLKEKGYDFEEIPLGN--DARGRSLRAVTGATTVPQVFIGGKLIGGSDEL 74
GRX_hybridPRX5 cd03029
Glutaredoxin (GRX) family, PRX5 hybrid subfamily; composed of hybrid proteins containing ...
4-70 7.07e-18

Glutaredoxin (GRX) family, PRX5 hybrid subfamily; composed of hybrid proteins containing peroxiredoxin (PRX) and GRX domains, which is found in some pathogenic bacteria and cyanobacteria. PRXs are thiol-specific antioxidant (TSA) proteins that confer a protective antioxidant role in cells through their peroxidase activity in which hydrogen peroxide, peroxynitrate, and organic hydroperoxides are reduced and detoxified using reducing equivalents derived from either thioredoxin, glutathione, trypanothione and AhpF. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins. PRX-GRX hybrid proteins from Haemophilus influenza and Neisseria meningitis exhibit GSH-dependent peroxidase activity. The flow of reducing equivalents in the catalytic cycle of the hybrid protein goes from NADPH -> GSH reductase -> GSH -> GRX domain of hybrid -> PRX domain of hybrid -> peroxide substrate.


Pssm-ID: 239327 [Multi-domain]  Cd Length: 72  Bit Score: 70.24  E-value: 7.07e-18
                       10        20        30        40        50        60
               ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 29654811  4 IEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEapEKRDEMLSRSEGRRTVPQIFINGRGIGGFDEL 70
Cdd:cd03029  3 VSLFTKPGCPFCARAKAALQENGISYEEIPLGK--DITGRSLRAVTGAMTVPQVFIDGELIGGSDDL 67
NrdH cd02976
NrdH-redoxin (NrdH) family; NrdH is a small monomeric protein with a conserved redox active ...
3-83 7.87e-18

NrdH-redoxin (NrdH) family; NrdH is a small monomeric protein with a conserved redox active CXXC motif within a TRX fold, characterized by a glutaredoxin (GRX)-like sequence and TRX-like activity profile. In vitro, it displays protein disulfide reductase activity that is dependent on TRX reductase, not glutathione (GSH). It is part of the NrdHIEF operon, where NrdEF codes for class Ib ribonucleotide reductase (RNR-Ib), an efficient enzyme at low oxygen levels. Under these conditions when GSH is mostly conjugated to spermidine, NrdH can still function and act as a hydrogen donor for RNR-Ib. It has been suggested that the NrdHEF system may be the oldest RNR reducing system, capable of functioning in a microaerophilic environment, where GSH was not yet available. NrdH from Corynebacterium ammoniagenes can form domain-swapped dimers, although it is unknown if this happens in vivo. Domain-swapped dimerization, which results in the blocking of the TRX reductase binding site, could be a mechanism for regulating the oxidation state of the protein.


Pssm-ID: 239274 [Multi-domain]  Cd Length: 73  Bit Score: 70.33  E-value: 7.87e-18
                       10        20        30        40        50        60        70        80
               ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 29654811  3 KIEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSeGRRTVPQIFINGRGIGGFDElweleqsKKLDEL 82
Cdd:cd02976  1 EVTVYTKPDCPYCKATKRFLDERGIPFEEVDVDEDPEALEELKKLN-GYRSVPVVVIGDEHLSGFRP-------DKLRAL 72

               .
gi 29654811 83 L 83
Cdd:cd02976 73 L 73
GRX_DEP cd03027
Glutaredoxin (GRX) family, Dishevelled, Egl-10, and Pleckstrin (DEP) subfamily; composed of ...
3-74 5.37e-16

Glutaredoxin (GRX) family, Dishevelled, Egl-10, and Pleckstrin (DEP) subfamily; composed of uncharacterized proteins containing a GRX domain and additional domains DEP and DUF547, both of which have unknown functions. GRX is a glutathione (GSH) dependent reductase containing a redox active CXXC motif in a TRX fold. It has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. By altering the redox state of target proteins, GRX is involved in many cellular functions.


Pssm-ID: 239325 [Multi-domain]  Cd Length: 73  Bit Score: 65.51  E-value: 5.37e-16
                       10        20        30        40        50        60        70
               ....*....|....*....|....*....|....*....|....*....|....*....|....*....|..
gi 29654811  3 KIEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSeGRRTVPQIFINGRGIGGFDELWELE 74
Cdd:cd03027  2 RVTIYSRLGCEDCTAVRLFLREKGLPYVEINIDIFPERKAELEERT-GSSVVPQIFFNEKLVGGLTDLKSLE 72
Uxx_star NF041212
Uxx-star family glutaredoxin-like (seleno)protein; A number of proteins with glutaredoxin-like ...
4-68 1.29e-15

Uxx-star family glutaredoxin-like (seleno)protein; A number of proteins with glutaredoxin-like folds, a length of about 75 amino acids, and a CxxC, C/UxxT, or CxxS motif near the N-terminus end with a UXX-COOH motif. That final motif typically is missed during coding region feature prediction by genome annotation pipelines. This HMM covers proteins from several distinctive families with this feature. The seed alignment illustrates the final selenocysteine or aligned Cys or Ser residues, but the HMM also hits proteins that lack an equivalent motif at the C-terminus. This C-terminal selenocysteine-containing motif has not yet been described in the literature.


Pssm-ID: 469116 [Multi-domain]  Cd Length: 70  Bit Score: 64.40  E-value: 1.29e-15
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 29654811   4 IEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSEGRRTVPQIFINGRGIGGFD 68
Cdd:NF041212  1 VVIYTKPGCPYCAAAKEDLARRGIPFEEIDVSKDPEALEEMLRLTGGERIVPVIVEGGEVTVGFG 65
grxA PRK11200
glutaredoxin 1; Provisional
3-69 6.14e-12

glutaredoxin 1; Provisional


Pssm-ID: 183036 [Multi-domain]  Cd Length: 85  Bit Score: 55.81  E-value: 6.14e-12
                        10        20        30        40        50        60        70
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 29654811   3 KIEIYTTARCPYCVRAKALLD-----RKGLDYMEIRI-DEAPEKRDemLSRSEGR--RTVPQIFINGRGIGGFDE 69
Cdd:PRK11200  2 FVVIFGRPGCPYCVRAKELAEklseeRDDFDYRYVDIhAEGISKAD--LEKTVGKpvETVPQIFVDQKHIGGCTD 74
PRK12759 PRK12759
bifunctional gluaredoxin/ribonucleoside-diphosphate reductase subunit beta; Provisional
1-70 6.44e-08

bifunctional gluaredoxin/ribonucleoside-diphosphate reductase subunit beta; Provisional


Pssm-ID: 139206 [Multi-domain]  Cd Length: 410  Bit Score: 47.71  E-value: 6.44e-08
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 29654811    1 MAKIEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRD-------EMLSRSEGRRTVPQIFINGRGIGGFDEL 70
Cdd:PRK12759   1 MVEVRIYTKTNCPFCDLAKSWFGANDIPFTQISLDDDVKRAEfyaevnkNILLVEEHIRTVPQIFVGDVHIGGYDNL 77
PHA03050 PHA03050
glutaredoxin; Provisional
3-85 4.09e-07

glutaredoxin; Provisional


Pssm-ID: 165343 [Multi-domain]  Cd Length: 108  Bit Score: 43.85  E-value: 4.09e-07
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 29654811    3 KIEIYTTARCPYCVRAKALLD-----RKGLDYMEIRIDEAPEKRDEMLSRSEGRRTVPQIFINGRGIGGFDELWELEQSK 77
Cdd:PHA03050  14 KVTIFVKFTCPFCRNALDILNkfsfkRGAYEIVDIKEFKPENELRDYFEQITGGRTVPRIFFGKTSIGGYSDLLEIDNMD 93

                 ....*...
gi 29654811   78 KLDELLKT 85
Cdd:PHA03050  94 ALGDILSS 101
GRX_GRX_like cd03031
Glutaredoxin (GRX) family, GRX-like domain containing protein subfamily; composed of ...
3-84 1.92e-06

Glutaredoxin (GRX) family, GRX-like domain containing protein subfamily; composed of uncharacterized eukaryotic proteins containing a GRX-like domain having only one conserved cysteine, aligning to the C-terminal cysteine of the CXXC motif of GRXs. This subfamily is predominantly composed of plant proteins. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins via a redox active CXXC motif using a similar dithiol mechanism employed by TRXs. GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. Proteins containing only the C-terminal cysteine are generally redox inactive.


Pssm-ID: 239329 [Multi-domain]  Cd Length: 147  Bit Score: 42.61  E-value: 1.92e-06
                        10        20        30        40        50        60        70        80
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 29654811   3 KIEIYTTA----RCPY--CVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSEGRR---TVPQIFINGRGIGGFDELWEL 73
Cdd:cd03031   1 RVVLYTTSlrgvRKTFedCNNVRAILESFRVKFDERDVSMDSGFREELRELLGAELkavSLPRVFVDGRYLGGAEEVLRL 80
                        90
                ....*....|.
gi 29654811  74 EQSKKLDELLK 84
Cdd:cd03031  81 NESGELRKLLK 91
MYSc_Myo33 cd14894
class myosin, motor domain; Class XXXIII myosins have variable numbers of IQ domain and 2 ...
17-84 2.46e-06

class myosin, motor domain; Class XXXIII myosins have variable numbers of IQ domain and 2 tandem ANK repeats that are separated by a PH domain. The myosin classes XXX to XXXIV contain members from Phytophthora species and Hyaloperonospora parasitica. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.


Pssm-ID: 276859 [Multi-domain]  Cd Length: 871  Bit Score: 43.58  E-value: 2.46e-06
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 29654811  17 RAKALLDRKGLDYMEI-RIDEAPEKRDEMLSRSEGRRtVPQIFINGRGIGGFDELWELEQSKKLDELLK 84
Cdd:cd14894 171 RTIALLEAKGVEKYEIvLLDLHPERWDEMTSVSRSKR-LPQVHVDGLFFGFYEKLEHLEDEEQLRMYFK 238
GRXA TIGR02183
Glutaredoxin, GrxA family; Glutaredoxins are thioltransferases (disulfide reductases) which ...
4-66 2.56e-06

Glutaredoxin, GrxA family; Glutaredoxins are thioltransferases (disulfide reductases) which utilize glutathione and NADPH as cofactors. Oxidized glutathione is regenerated by glutathione reductase. Together these components compose the glutathione system. Glutaredoxins utilize the CXXC motif common to thioredoxins and are involved in multiple cellular processes including protection from redox stress, reduction of critical enzymes such as ribonucleotide reductase and the generation of reduced sulfur for iron sulfur cluster formation. Glutaredoxins are capable of reduction of mixed disulfides of glutathione as well as the formation of glutathione mixed disulfides. This model includes the E. coli glyutaredoxin GrxA which appears to have primary responsibility for the reduction of ribonucleotide reductase.


Pssm-ID: 131238 [Multi-domain]  Cd Length: 86  Bit Score: 41.35  E-value: 2.56e-06
                         10        20        30        40        50        60        70
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|.
gi 29654811    4 IEIYTTARCPYCVRAKAL-----LDRKGLDYMEIRID-EAPEKRDemLSRSEGR--RTVPQIFINGRGIGG 66
Cdd:TIGR02183  2 VVIFGRPGCPYCVRAKQLaeklaIERADFEFRYIDIHaEGISKAD--LEKTVGKpvETVPQIFVDEKHVGG 70
TRX_superfamily cd01659
Thioredoxin (TRX) superfamily; a large, diverse group of proteins containing a TRX-fold. Many ...
4-65 3.81e-06

Thioredoxin (TRX) superfamily; a large, diverse group of proteins containing a TRX-fold. Many members contain a classic TRX domain with a redox active CXXC motif. They function as protein disulfide oxidoreductases (PDOs), altering the redox state of target proteins via the reversible oxidation of their active site dithiol. The PDO members of this superfamily include TRX, protein disulfide isomerase (PDI), tlpA-like, glutaredoxin, NrdH redoxin, and the bacterial Dsb (DsbA, DsbC, DsbG, DsbE, DsbDgamma) protein families. Members of the superfamily that do not function as PDOs but contain a TRX-fold domain include phosducins, peroxiredoxins and glutathione (GSH) peroxidases, SCO proteins, GSH transferases (GST, N-terminal domain), arsenic reductases, TRX-like ferredoxins and calsequestrin, among others.


Pssm-ID: 238829 [Multi-domain]  Cd Length: 69  Bit Score: 40.37  E-value: 3.81e-06
                       10        20        30        40        50        60
               ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 29654811  4 IEIYTTARCPYCVRAKALLDR-----KGLDYMEIRIDEAPEKRDEMlsRSEGRRTVPQIFINGRGIG 65
Cdd:cd01659  1 LVLFYAPWCPFCQALRPVLAElallnKGVKFEAVDVDEDPALEKEL--KRYGVGGVPTLVVFGPGIG 65
GlrX-like_plant TIGR02189
Glutaredoxin-like family; This family of glutaredoxin-like proteins is aparrently limited to ...
6-84 4.17e-06

Glutaredoxin-like family; This family of glutaredoxin-like proteins is aparrently limited to plants. Multiple isoforms are found in A. thaliana and O.sativa.


Pssm-ID: 274023 [Multi-domain]  Cd Length: 99  Bit Score: 40.90  E-value: 4.17e-06
                         10        20        30        40        50        60        70        80
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 29654811    6 IYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRD--EMLSRSEGRRTVPQIFINGRGIGGFDELWELEQSKKLDELL 83
Cdd:TIGR02189 12 IFSRSSCCMCHVVKRLLLTLGVNPAVHEIDKEPAGKDieNALSRLGCSPAVPAVFVGGKLVGGLENVMALHISGSLVPML 91

                 .
gi 29654811   84 K 84
Cdd:TIGR02189 92 K 92
GST_N_family cd00570
Glutathione S-transferase (GST) family, N-terminal domain; a large, diverse group of cytosolic ...
4-62 8.92e-06

Glutathione S-transferase (GST) family, N-terminal domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK subfamily, a member of the DsbA family). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Based on sequence similarity, different classes of GSTs have been identified, which display varying tissue distribution, substrate specificities and additional specific activities. In humans, GSTs display polymorphisms which may influence individual susceptibility to diseases such as cancer, arthritis, allergy and sclerosis. Some GST family members with non-GST functions include glutaredoxin 2, the CLIC subfamily of anion channels, prion protein Ure2p, crystallins, metaxin 2 and stringent starvation protein A.


Pssm-ID: 238319 [Multi-domain]  Cd Length: 71  Bit Score: 39.48  E-value: 8.92e-06
                       10        20        30        40        50
               ....*....|....*....|....*....|....*....|....*....|....*....
gi 29654811  4 IEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSeGRRTVPQIFINGR 62
Cdd:cd00570  1 LKLYYFPGSPRSLRVRLALEEKGLPYELVPVDLGEGEQEEFLALN-PLGKVPVLEDGGL 58
TRX_GRX_like cd02973
Thioredoxin (TRX)-Glutaredoxin (GRX)-like family; composed of archaeal and bacterial proteins ...
3-65 1.89e-05

Thioredoxin (TRX)-Glutaredoxin (GRX)-like family; composed of archaeal and bacterial proteins that show similarity to both TRX and GRX, including the C-terminal TRX-fold subdomain of Pyrococcus furiosus protein disulfide oxidoreductase (PfPDO). All members contain a redox-active CXXC motif and may function as PDOs. The archaeal proteins Mj0307 and Mt807 show structures more similar to GRX, but activities more similar to TRX. Some members of the family are similar to PfPDO in that they contain a second CXXC motif located in a second TRX-fold subdomain at the N-terminus; the superimposable N- and C-terminal TRX subdomains form a compact structure. PfPDO is postulated to be the archaeal counterpart of bacterial DsbA and eukaryotic protein disulfide isomerase (PDI). The C-terminal CXXC motif of PfPDO is required for its oxidase, reductase and isomerase activities. Also included in the family is the C-terminal TRX-fold subdomain of the N-terminal domain (NTD) of bacterial AhpF, which has a similar fold as PfPDO with two TRX-fold subdomains but without the second CXXC motif.


Pssm-ID: 239271 [Multi-domain]  Cd Length: 67  Bit Score: 38.70  E-value: 1.89e-05
                       10        20        30        40        50        60        70
               ....*....|....*....|....*....|....*....|....*....|....*....|....*....|
gi 29654811  3 KIEIYTTARCPYCVRAKALLDR-----KGLDYMEIRIDEAPEKRDEMlsrseGRRTVPQIFINGR--GIG 65
Cdd:cd02973  2 NIEVFVSPTCPYCPDAVQAANRiaalnPNISAEMIDAAEFPDLADEY-----GVMSVPAIVINGKveFVG 66
GST_N_3 pfam13417
Glutathione S-transferase, N-terminal domain;
7-66 2.12e-05

Glutathione S-transferase, N-terminal domain;


Pssm-ID: 433190 [Multi-domain]  Cd Length: 75  Bit Score: 38.75  E-value: 2.12e-05
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|
gi 29654811    7 YTTARCPYCVRAKALLDRKGLDYMEIRIDEApEKRDEMLSRSeGRRTVPQIFINGRGIGG 66
Cdd:pfam13417  2 YGFPGSPYARRVRIALNEKGLPYEFVPIPPG-DHPPELLAKN-PLGKVPVLEDDGGILCE 59
GRX_PICOT_like cd03028
Glutaredoxin (GRX) family, PKC-interacting cousin of TRX (PICOT)-like subfamily; composed of ...
11-79 4.54e-05

Glutaredoxin (GRX) family, PKC-interacting cousin of TRX (PICOT)-like subfamily; composed of PICOT and GRX-PICOT-like proteins. The non-PICOT members of this family contain only the GRX-like domain, whereas PICOT contains an N-terminal TRX-like domain followed by one to three GRX-like domains. It is interesting to note that PICOT from plants contain three repeats of the GRX-like domain, metazoan proteins (except for insect) have two repeats, while fungal sequences contain only one copy of the domain. PICOT is a protein that interacts with protein kinase C (PKC) theta, a calcium independent PKC isoform selectively expressed in skeletal muscle and T lymphocytes. PICOT inhibits the activation of c-Jun N-terminal kinase and the transcription factors, AP-1 and NF-kB, induced by PKC theta or T-cell activating stimuli. Both GRX and TRX domains of PICOT are required for its activity. Characterized non-PICOT members of this family include CXIP1, a CAX-interacting protein in Arabidopsis thaliana, and PfGLP-1, a GRX-like protein from Plasmodium falciparum.


Pssm-ID: 239326  Cd Length: 90  Bit Score: 38.24  E-value: 4.54e-05
                       10        20        30        40        50        60
               ....*....|....*....|....*....|....*....|....*....|....*....|....*....
gi 29654811 11 RCPYCVRAKALLDRKGLDYMEIRIDEAPEKRdEMLSRSEGRRTVPQIFINGRGIGGFDELWELEQSKKL 79
Cdd:cd03028 22 RCGFSRKVVQILNQLGVDFGTFDILEDEEVR-QGLKEYSNWPTFPQLYVNGELVGGCDIVKEMHESGEL 89
ArsC_like cd03036
Arsenate Reductase (ArsC) family, unknown subfamily; uncharacterized proteins containing a ...
4-45 1.68e-04

Arsenate Reductase (ArsC) family, unknown subfamily; uncharacterized proteins containing a CXXC motif with similarity to thioredoxin (TRX)-fold arsenic reductases, ArsC. Proteins containing a redox active CXXC motif like TRX and glutaredoxin (GRX) function as protein disulfide oxidoreductases, altering the redox state of target proteins via the reversible oxidation of the active site dithiol. ArsC catalyzes the reduction of arsenate [As(V)] to arsenite [As(III)], using reducing equivalents derived from glutathione via GRX, through a single catalytic cysteine.


Pssm-ID: 239334  Cd Length: 111  Bit Score: 36.84  E-value: 1.68e-04
                        10        20        30        40
                ....*....|....*....|....*....|....*....|..
gi 29654811   4 IEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEML 45
Cdd:cd03036   1 LKFYEYPKCSTCRKAKKWLDEHGVDYTAIDIVEEPPSKEELK 42
GST_N_2 pfam13409
Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798.
12-74 1.72e-04

Glutathione S-transferase, N-terminal domain; This family is closely related to pfam02798.


Pssm-ID: 433184 [Multi-domain]  Cd Length: 68  Bit Score: 36.07  E-value: 1.72e-04
                         10        20        30        40        50        60
                 ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 29654811   12 CPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLSRSEGRRTVPQIF-INGRGIGGFDE-LWELE 74
Cdd:pfam13409  2 SPFSHRVRLALEEKGLPYEIELVDLDPKDKPPELLALNPLGTVPVLVlPDGTVLTDSLViLEYLE 66
PRK10329 PRK10329
glutaredoxin-like protein NrdH;
3-67 2.13e-04

glutaredoxin-like protein NrdH;


Pssm-ID: 182381  Cd Length: 81  Bit Score: 36.42  E-value: 2.13e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 29654811   3 KIEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMlsRSEGRRTVPQIFINGRGIGGF 67
Cdd:PRK10329  2 RITIYTRNDCVQCHATKRAMESRGFDFEMINVDRVPEAAETL--RAQGFRQLPVVIAGDLSWSGF 64
GRX_SH3BGR cd03030
Glutaredoxin (GRX) family, SH3BGR (SH3 domain binding glutamic acid-rich protein) subfamily; a ...
21-84 1.79e-03

Glutaredoxin (GRX) family, SH3BGR (SH3 domain binding glutamic acid-rich protein) subfamily; a recently-identified subfamily composed of SH3BGR and similar proteins possessing significant sequence similarity to GRX, but without a redox active CXXC motif. The SH3BGR gene was cloned in an effort to identify genes mapping to chromosome 21, which could be involved in the pathogenesis of congenital heart disease affecting Down syndrome newborns. Several human SH3BGR-like (SH3BGRL) genes have been identified since, mapping to different locations in the chromosome. Of these, SH3BGRL3 was identified as a tumor necrosis factor (TNF) alpha inhibitory protein and was also named TIP-B1. Upregulation of expression of SH3BGRL3 is associated with differentiation. It has been suggested that it functions as a regulator of differentiation-related signal transduction pathways.


Pssm-ID: 239328 [Multi-domain]  Cd Length: 92  Bit Score: 34.17  E-value: 1.79e-03
                       10        20        30        40        50        60
               ....*....|....*....|....*....|....*....|....*....|....*....|....*..
gi 29654811 21 LLDRKGLDYMEIRIDEAPEKRDEM---LSRSEGRRTVPQIFINGRGIGGFDELWELEQSKKLDELLK 84
Cdd:cd03030 25 FLEAKKIEFEEVDISMNEENRQWMrenVPNENGKPLPPQIFNGDEYCGDYEAFFEAKENNTLEEFLK 91
spxA PRK13344
transcriptional regulator Spx; Reviewed
4-46 4.44e-03

transcriptional regulator Spx; Reviewed


Pssm-ID: 183988  Cd Length: 132  Bit Score: 33.78  E-value: 4.44e-03
                         10        20        30        40
                 ....*....|....*....|....*....|....*....|...
gi 29654811    4 IEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLS 46
Cdd:PRK13344   2 IKIYTISSCTSCKKAKTWLNAHQLSYKEQNLGKEPLTKEEILA 44
GstA COG0625
Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones];
4-55 4.67e-03

Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones];


Pssm-ID: 440390 [Multi-domain]  Cd Length: 205  Bit Score: 33.72  E-value: 4.67e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....
gi 29654811   4 IEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAP--EKRDEMLSRSeGRRTVP 55
Cdd:COG0625   2 MKLYGSPPSPNSRRVRIALEEKGLPYELVPVDLAKgeQKSPEFLALN-PLGKVP 54
ArsC_family cd02977
Arsenate Reductase (ArsC) family; composed of TRX-fold arsenic reductases and similar proteins ...
4-46 5.08e-03

Arsenate Reductase (ArsC) family; composed of TRX-fold arsenic reductases and similar proteins including the transcriptional regulator, Spx. ArsC catalyzes the reduction of arsenate [As(V)] to arsenite [As(III)], using reducing equivalents derived from glutathione (GSH) via glutaredoxin (GRX), through a single catalytic cysteine. This family of predominantly bacterial enzymes is unrelated to two other families of arsenate reductases which show similarity to low-molecular-weight acid phosphatases and phosphotyrosyl phosphatases. Spx is a general regulator that exerts negative and positive control over transcription initiation by binding to the C-terminal domain of the alpha subunit of RNA polymerase.


Pssm-ID: 239275  Cd Length: 105  Bit Score: 32.85  E-value: 5.08e-03
                        10        20        30        40
                ....*....|....*....|....*....|....*....|...
gi 29654811   4 IEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDEMLS 46
Cdd:cd02977   1 ITIYGNPNCSTSRKALAWLEEHGIEYEFIDYLKEPPTKEELKE 43
ArsC_Spx cd03032
Arsenate Reductase (ArsC) family, Spx subfamily; Spx is a unique RNA polymerase (RNAP)-binding ...
3-49 5.93e-03

Arsenate Reductase (ArsC) family, Spx subfamily; Spx is a unique RNA polymerase (RNAP)-binding protein present in bacilli and some mollicutes. It inhibits transcription by binding to the C-terminal domain of the alpha subunit of RNAP, disrupting complex formation between RNAP and certain transcriptional activator proteins like ResD and ComA. In response to oxidative stress, Spx can also activate transcription, making it a general regulator that exerts both positive and negative control over transcription initiation. Spx has been shown to exert redox-sensitive transcriptional control over genes like trxA (TRX) and trxB (TRX reductase), genes that function in thiol homeostasis. This redox-sensitive activity is dependent on the presence of a CXXC motif, present in some members of the Spx subfamily, that acts as a thiol/disulfide switch. Spx has also been shown to repress genes in a sulfate-dependent manner independent of the presence of the CXXC motif.


Pssm-ID: 239330  Cd Length: 115  Bit Score: 32.98  E-value: 5.93e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|
gi 29654811   3 KIEIYTTARCPYCVRAKALLDRKGLDYMEIRIDEAPEKRDE---MLSRSE 49
Cdd:cd03032   1 MIKLYTSPSCSSCRKAKQWLEEHQIPFEERNLFKQPLTKEElkeILSLTE 50
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.21
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH