VirB9/CagX/TrbG, a component of the type IV secretion system; VirB9 is a component of the type ...
49-256
7.28e-100
VirB9/CagX/TrbG, a component of the type IV secretion system; VirB9 is a component of the type IV secretion system, which is employed by pathogenic bacteria to export virulence proteins directly from the bacterial cytoplasm into the host cell. Unlike the more common type III secretion system, type IV systems evolved from the conjugative apparatus, which is used to transfer DNA between cells. VirB9 was initially identified as an essential virulence gene on the Agrobacterium tumefaciens Ti plasmid. In the pilin-like conjugative structure, VirB9 appears to form a stabilizing complex in the outer membrane, by interacting with the lipoprotein VirB7. The heterodimer has been shown to stabilize other components of the type IV system. This alignment model spans the C-terminal domain of VirB9. CagX is a component of the Helicobacter pylori cag PAI-encoded type IV secretion system. Some other members of this family are involved in conjugal transfer to T-DNA of plant cells.
The actual alignment was detected with superfamily member TIGR02775:
Pssm-ID: 448249 [Multi-domain] Cd Length: 206 Bit Score: 290.88 E-value: 7.28e-100
P-type conjugative transfer protein TrbG; The TrbG protein is found in the trb locus of ...
49-256
7.28e-100
P-type conjugative transfer protein TrbG; The TrbG protein is found in the trb locus of Agrobacterium Ti plasmids where it is involved in the type IV secretion system for plasmid conjugative transfer. TrbG is a homolog of the F-type TraK protein (which is believed to be an outer membrane pore-forming secretin, TIGR02756) as well as the vir system VirB9 protein. [Cellular processes, Conjugation]
Pssm-ID: 274292 [Multi-domain] Cd Length: 206 Bit Score: 290.88 E-value: 7.28e-100
Conjugal transfer protein; This family includes type IV secretion system CagX conjugation ...
49-267
1.05e-87
Conjugal transfer protein; This family includes type IV secretion system CagX conjugation protein. Other members of this family are involved in conjugal transfer to plant cells of T-DNA.
Pssm-ID: 427348 [Multi-domain] Cd Length: 216 Bit Score: 260.29 E-value: 1.05e-87
VirB9/CagX/TrbG, a component of the type IV secretion system; VirB9 is a component of the type ...
178-267
2.79e-31
VirB9/CagX/TrbG, a component of the type IV secretion system; VirB9 is a component of the type IV secretion system, which is employed by pathogenic bacteria to export virulence proteins directly from the bacterial cytoplasm into the host cell. Unlike the more common type III secretion system, type IV systems evolved from the conjugative apparatus, which is used to transfer DNA between cells. VirB9 was initially identified as an essential virulence gene on the Agrobacterium tumefaciens Ti plasmid. In the pilin-like conjugative structure, VirB9 appears to form a stabilizing complex in the outer membrane, by interacting with the lipoprotein VirB7. The heterodimer has been shown to stabilize other components of the type IV system. This alignment model spans the C-terminal domain of VirB9. CagX is a component of the Helicobacter pylori cag PAI-encoded type IV secretion system. Some other members of this family are involved in conjugal transfer to T-DNA of plant cells.
Pssm-ID: 132874 [Multi-domain] Cd Length: 86 Bit Score: 111.52 E-value: 2.79e-31
P-type conjugative transfer protein TrbG; The TrbG protein is found in the trb locus of ...
49-256
7.28e-100
P-type conjugative transfer protein TrbG; The TrbG protein is found in the trb locus of Agrobacterium Ti plasmids where it is involved in the type IV secretion system for plasmid conjugative transfer. TrbG is a homolog of the F-type TraK protein (which is believed to be an outer membrane pore-forming secretin, TIGR02756) as well as the vir system VirB9 protein. [Cellular processes, Conjugation]
Pssm-ID: 274292 [Multi-domain] Cd Length: 206 Bit Score: 290.88 E-value: 7.28e-100
Conjugal transfer protein; This family includes type IV secretion system CagX conjugation ...
49-267
1.05e-87
Conjugal transfer protein; This family includes type IV secretion system CagX conjugation protein. Other members of this family are involved in conjugal transfer to plant cells of T-DNA.
Pssm-ID: 427348 [Multi-domain] Cd Length: 216 Bit Score: 260.29 E-value: 1.05e-87
P-type conjugative transfer protein VirB9; The VirB9 protein is found in the vir locus of ...
14-258
2.16e-33
P-type conjugative transfer protein VirB9; The VirB9 protein is found in the vir locus of Agrobacterium Ti plasmids where it is involved in a type IV secretion system . VirB9 is a homolog of the F-type conjugative transfer system TraK protein (which is believed to be an outer membrane pore-forming secretin, TIGR02756) as well as the Ti system TrbG protein. [Cellular processes, Conjugation]
Pssm-ID: 274296 [Multi-domain] Cd Length: 243 Bit Score: 122.05 E-value: 2.16e-33
VirB9/CagX/TrbG, a component of the type IV secretion system; VirB9 is a component of the type ...
178-267
2.79e-31
VirB9/CagX/TrbG, a component of the type IV secretion system; VirB9 is a component of the type IV secretion system, which is employed by pathogenic bacteria to export virulence proteins directly from the bacterial cytoplasm into the host cell. Unlike the more common type III secretion system, type IV systems evolved from the conjugative apparatus, which is used to transfer DNA between cells. VirB9 was initially identified as an essential virulence gene on the Agrobacterium tumefaciens Ti plasmid. In the pilin-like conjugative structure, VirB9 appears to form a stabilizing complex in the outer membrane, by interacting with the lipoprotein VirB7. The heterodimer has been shown to stabilize other components of the type IV system. This alignment model spans the C-terminal domain of VirB9. CagX is a component of the Helicobacter pylori cag PAI-encoded type IV secretion system. Some other members of this family are involved in conjugal transfer to T-DNA of plant cells.
Pssm-ID: 132874 [Multi-domain] Cd Length: 86 Bit Score: 111.52 E-value: 2.79e-31
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options