energy-coupling factor ABC transporter permease similar to cobalt transport protein CbiM which is a seven-transmembrane protein and the substrate-specific component of the energy-coupling factor (ECF) transporter complex CbiMNOQ involved in cobalt import
cobalamin biosynthesis protein CbiM; A cutoff of 200 bits for trusted orthologs of cbiM is ...
31-244
3.79e-120
cobalamin biosynthesis protein CbiM; A cutoff of 200 bits for trusted orthologs of cbiM is suggested. Scores lower than 200 but higher than 20 may be considered sufficient to call a protein cobalamin biosynthesis protein CbiM-related.The seed alignment for this model is a cluster of very closely related proteins from Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, Methanococcus jannaschii, and Salmonella typhimurium, each of which has greater than 50% identity to all the others. The ortholog from Salmonella is the source of the gene symbol cbiM for this set.In Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, and Methanococcus jannaschii, a second homolog of cbiM is also found. These cbiM-related proteins appear to represent a distinct but less well-conserved orthologous group. Still more distant homologs include sll0383 from Synechocystis sp. and HI1621 from Haemophilus influenzae; the latter protein, from a species that does not synthesize cobalamin, is the most divergent member of the group. The functions of and relationships among the set of proteins homologous to cbiM have not been determined. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin]
Pssm-ID: 272919 Cd Length: 214 Bit Score: 341.01 E-value: 3.79e-120
Cobalt uptake substrate-specific transmembrane region; This family of proteins forms part of ...
32-238
3.36e-51
Cobalt uptake substrate-specific transmembrane region; This family of proteins forms part of the cobalt-transport complex in prokaryotes, CbiMNQO. CbiMNQO and NikMNQO are the most widespread groups of microbial transporters for cobalt and nickel ions and are unusual uptake systems as they consist of eg two transmembrane components (CbiM and CbiQ), a small membrane-bound component (CbiN) and an ATP-binding protein (CbiO) but no extracytoplasmic solute-binding protein. Similar components constitute the nickel transporters with some variability in the small membrane-bound component, either NikN or NikL, which are not similar to CbiN at the sequence level. CbiM is the substrate-specific component of the complex and is a seven-transmembrane protein. The CbiMNQO and NikMNQO systems form part of the coenzyme B12 biosynthesis pathway. The NikM protein is pfam10670.
Pssm-ID: 460375 [Multi-domain] Cd Length: 202 Bit Score: 165.44 E-value: 3.36e-51
cobalamin biosynthesis protein CbiM; A cutoff of 200 bits for trusted orthologs of cbiM is ...
31-244
3.79e-120
cobalamin biosynthesis protein CbiM; A cutoff of 200 bits for trusted orthologs of cbiM is suggested. Scores lower than 200 but higher than 20 may be considered sufficient to call a protein cobalamin biosynthesis protein CbiM-related.The seed alignment for this model is a cluster of very closely related proteins from Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, Methanococcus jannaschii, and Salmonella typhimurium, each of which has greater than 50% identity to all the others. The ortholog from Salmonella is the source of the gene symbol cbiM for this set.In Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, and Methanococcus jannaschii, a second homolog of cbiM is also found. These cbiM-related proteins appear to represent a distinct but less well-conserved orthologous group. Still more distant homologs include sll0383 from Synechocystis sp. and HI1621 from Haemophilus influenzae; the latter protein, from a species that does not synthesize cobalamin, is the most divergent member of the group. The functions of and relationships among the set of proteins homologous to cbiM have not been determined. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin]
Pssm-ID: 272919 Cd Length: 214 Bit Score: 341.01 E-value: 3.79e-120
Cobalt uptake substrate-specific transmembrane region; This family of proteins forms part of ...
32-238
3.36e-51
Cobalt uptake substrate-specific transmembrane region; This family of proteins forms part of the cobalt-transport complex in prokaryotes, CbiMNQO. CbiMNQO and NikMNQO are the most widespread groups of microbial transporters for cobalt and nickel ions and are unusual uptake systems as they consist of eg two transmembrane components (CbiM and CbiQ), a small membrane-bound component (CbiN) and an ATP-binding protein (CbiO) but no extracytoplasmic solute-binding protein. Similar components constitute the nickel transporters with some variability in the small membrane-bound component, either NikN or NikL, which are not similar to CbiN at the sequence level. CbiM is the substrate-specific component of the complex and is a seven-transmembrane protein. The CbiMNQO and NikMNQO systems form part of the coenzyme B12 biosynthesis pathway. The NikM protein is pfam10670.
Pssm-ID: 460375 [Multi-domain] Cd Length: 202 Bit Score: 165.44 E-value: 3.36e-51
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options