Nucleoporin FG repeated region; Nucleoporin_FG2, or nucleoporin p58/p45, is a family of ...
75-267
1.99e-05
Nucleoporin FG repeated region; Nucleoporin_FG2, or nucleoporin p58/p45, is a family of chordate nucleoporins. The proteins carry many repeats of the FG sequence motif.
The actual alignment was detected with superfamily member pfam15967:
Pssm-ID: 435043 [Multi-domain] Cd Length: 586 Bit Score: 47.35 E-value: 1.99e-05
Nucleoporin FG repeated region; Nucleoporin_FG2, or nucleoporin p58/p45, is a family of ...
75-267
1.99e-05
Nucleoporin FG repeated region; Nucleoporin_FG2, or nucleoporin p58/p45, is a family of chordate nucleoporins. The proteins carry many repeats of the FG sequence motif.
Pssm-ID: 435043 [Multi-domain] Cd Length: 586 Bit Score: 47.35 E-value: 1.99e-05
CENP-Q, a CENPA-CAD centromere complex subunit; CENP-Q is one of the components that assembles ...
379-500
9.02e-04
CENP-Q, a CENPA-CAD centromere complex subunit; CENP-Q is one of the components that assembles onto the CENPA-nucleosome distal (CAD) centromere. The centromere, which is the basic element of chromosome inheritance, is epigenetically determined in mammals. CENP-A, the centromere-specific histone H3 variant, assembles an array of nucleosomes and it is this that seems to be the prime candidate for specifying centromere identity. CENPA nucleosomes directly recruit a proximal CENPA-nucleosome-associated complex (NAC) comprised of CENP-M, CENP-N and CENP-T, CENP-U(50), CENP-C and CENP-H. Assembly of the CENPA NAC at centromeres is dependent on CENP-M, CENP-N and CENP-T. Additionally, there are seven other subunits which make up the CENPA-nucleosome distal (CAD) centromere, CENP-K, CENP-L, CENP-O, CENP-P, CENP-Q, CENP-R and CENP-S, also assembling on the CENP-A NAC. Fta7 is the equivalent component of the fission yeast Sim4 complex.
Pssm-ID: 432970 [Multi-domain] Cd Length: 159 Bit Score: 39.96 E-value: 9.02e-04
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ...
335-463
1.10e-03
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 41.98 E-value: 1.10e-03
Nucleoporin FG repeated region; Nucleoporin_FG2, or nucleoporin p58/p45, is a family of ...
75-267
1.99e-05
Nucleoporin FG repeated region; Nucleoporin_FG2, or nucleoporin p58/p45, is a family of chordate nucleoporins. The proteins carry many repeats of the FG sequence motif.
Pssm-ID: 435043 [Multi-domain] Cd Length: 586 Bit Score: 47.35 E-value: 1.99e-05
Nucleoporin FG repeated region; Nucleoporin_FG2, or nucleoporin p58/p45, is a family of ...
1-257
1.22e-04
Nucleoporin FG repeated region; Nucleoporin_FG2, or nucleoporin p58/p45, is a family of chordate nucleoporins. The proteins carry many repeats of the FG sequence motif.
Pssm-ID: 435043 [Multi-domain] Cd Length: 586 Bit Score: 44.66 E-value: 1.22e-04
CENP-Q, a CENPA-CAD centromere complex subunit; CENP-Q is one of the components that assembles ...
379-500
9.02e-04
CENP-Q, a CENPA-CAD centromere complex subunit; CENP-Q is one of the components that assembles onto the CENPA-nucleosome distal (CAD) centromere. The centromere, which is the basic element of chromosome inheritance, is epigenetically determined in mammals. CENP-A, the centromere-specific histone H3 variant, assembles an array of nucleosomes and it is this that seems to be the prime candidate for specifying centromere identity. CENPA nucleosomes directly recruit a proximal CENPA-nucleosome-associated complex (NAC) comprised of CENP-M, CENP-N and CENP-T, CENP-U(50), CENP-C and CENP-H. Assembly of the CENPA NAC at centromeres is dependent on CENP-M, CENP-N and CENP-T. Additionally, there are seven other subunits which make up the CENPA-nucleosome distal (CAD) centromere, CENP-K, CENP-L, CENP-O, CENP-P, CENP-Q, CENP-R and CENP-S, also assembling on the CENP-A NAC. Fta7 is the equivalent component of the fission yeast Sim4 complex.
Pssm-ID: 432970 [Multi-domain] Cd Length: 159 Bit Score: 39.96 E-value: 9.02e-04
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of ...
335-463
1.10e-03
chromosome segregation protein SMC, primarily archaeal type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. It is found in a single copy and is homodimeric in prokaryotes, but six paralogs (excluded from this family) are found in eukarotes, where SMC proteins are heterodimeric. This family represents the SMC protein of archaea and a few bacteria (Aquifex, Synechocystis, etc); the SMC of other bacteria is described by TIGR02168. The N- and C-terminal domains of this protein are well conserved, but the central hinge region is skewed in composition and highly divergent. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274009 [Multi-domain] Cd Length: 1164 Bit Score: 41.98 E-value: 1.10e-03
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
336-455
2.43e-03
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 40.81 E-value: 2.43e-03
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
331-463
3.20e-03
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 40.43 E-value: 3.20e-03
helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of ...
337-464
4.25e-03
helix-rich Mycoplasma protein; Members of this family occur strictly within a subset of Mycoplasma species. Members average 750 amino acids in length, including signal peptide. Sequences are predicted (Jpred 3) to be almost entirely alpha-helical. These sequences show strong periodicity (consistent with long alpha helical structures) and low complexity rich in D,E,N,Q, and K. Genes encoding these proteins are often found in tandem. The function is unknown.
Pssm-ID: 275316 [Multi-domain] Cd Length: 745 Bit Score: 40.00 E-value: 4.25e-03
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of ...
335-522
4.54e-03
chromosome segregation protein SMC, common bacterial type; SMC (structural maintenance of chromosomes) proteins bind DNA and act in organizing and segregating chromosomes for partition. SMC proteins are found in bacteria, archaea, and eukaryotes. This family represents the SMC protein of most bacteria. The smc gene is often associated with scpB (TIGR00281) and scpA genes, where scp stands for segregation and condensation protein. SMC was shown (in Caulobacter crescentus) to be induced early in S phase but present and bound to DNA throughout the cell cycle. [Cellular processes, Cell division, DNA metabolism, Chromosome-associated proteins]
Pssm-ID: 274008 [Multi-domain] Cd Length: 1179 Bit Score: 40.04 E-value: 4.54e-03
Fms-interacting protein/Thoc5; This entry carries part of the crucial 144 N-terminal residues ...
391-465
5.52e-03
Fms-interacting protein/Thoc5; This entry carries part of the crucial 144 N-terminal residues of the FmiP (Fms interacting protein). A member of the THO (suppressors of the transcriptional defects of hpr1delta by overexpression) complex which is a subcomplex of the transcription/export (TREX) complex. It is essential for the binding of the protein to the cytoplasmic domain of activated Fms-molecules in M-CSF induced haematopoietic differentiation of macrophages. Fmip is also known as THOC5 (THO complex subunit 5) a 683 amino acids long protein which contains a nuclear localization sequence (NLS), a leucine zipper and a PEST like sequence (aa. 303-319) that carries three ataxia-telangiectasia mutated (ATM) kinase specific phosphorylation sites. The C-terminus contains a THOC1 binding site. The level of FMIP/Thoc5 expression might form a threshold that determines whether cells differentiate into macrophages or into granulocytes.
Pssm-ID: 462889 Cd Length: 347 Bit Score: 39.22 E-value: 5.52e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options