Pseudouridine synthase, Escherichia coli RluF like; This group is comprised of bacterial ...
61-224
5.78e-104
Pseudouridine synthase, Escherichia coli RluF like; This group is comprised of bacterial proteins similar to Escherichia coli RluF. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. E.coli RluF makes psi2604 in 23S RNA. psi2604 has only been detected in E. coli. It is absent from other eubacteria despite a precursor U at that site and from eukarya and archea which lack a precursor U at that site.
:
Pssm-ID: 211328 [Multi-domain] Cd Length: 164 Bit Score: 297.30 E-value: 5.78e-104
S4/Hsp/ tRNA synthetase RNA-binding domain; The domain surface is populated by conserved, ...
1-66
5.98e-06
S4/Hsp/ tRNA synthetase RNA-binding domain; The domain surface is populated by conserved, charged residues that define a likely RNA-binding site; Found in stress proteins, ribosomal proteins and tRNA synthetases; This may imply a hitherto unrecognized functional similarity between these three protein classes.
:
Pssm-ID: 238095 [Multi-domain] Cd Length: 70 Bit Score: 43.01 E-value: 5.98e-06
Pseudouridine synthase, Escherichia coli RluF like; This group is comprised of bacterial ...
61-224
5.78e-104
Pseudouridine synthase, Escherichia coli RluF like; This group is comprised of bacterial proteins similar to Escherichia coli RluF. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. E.coli RluF makes psi2604 in 23S RNA. psi2604 has only been detected in E. coli. It is absent from other eubacteria despite a precursor U at that site and from eukarya and archea which lack a precursor U at that site.
Pssm-ID: 211328 [Multi-domain] Cd Length: 164 Bit Score: 297.30 E-value: 5.78e-104
Pseudouridylate synthase RsuA, specific for 16S rRNA U516 and 23S rRNA U2605 [Translation, ...
1-218
2.15e-99
Pseudouridylate synthase RsuA, specific for 16S rRNA U516 and 23S rRNA U2605 [Translation, ribosomal structure and biogenesis]; Pseudouridylate synthase RsuA, specific for 16S rRNA U516 and 23S rRNA U2605 is part of the Pathway/BioSystem: 16S rRNA modification
Pssm-ID: 440800 [Multi-domain] Cd Length: 226 Bit Score: 288.09 E-value: 2.15e-99
pseudouridine synthase; This model identifies panels of pseudouridine synthase enzymes that ...
96-219
6.34e-51
pseudouridine synthase; This model identifies panels of pseudouridine synthase enzymes that RNA modifications involved in maturing the protein translation apparatus. Counts per genome vary: two in Staphylococcus aureus, three in Pseudomonas putida, four in E. coli, etc. [Protein synthesis, tRNA and rRNA base modification]
Pssm-ID: 272902 Cd Length: 128 Bit Score: 161.73 E-value: 6.34e-51
RNA pseudouridylate synthase; Members of this family are involved in modifying bases in RNA ...
62-185
7.10e-22
RNA pseudouridylate synthase; Members of this family are involved in modifying bases in RNA molecules. They carry out the conversion of uracil bases to pseudouridine. This family includes RluD, a pseudouridylate synthase that converts specific uracils to pseudouridine in 23S rRNA. RluA from E. coli converts bases in both rRNA and tRNA.
Pssm-ID: 459961 [Multi-domain] Cd Length: 151 Bit Score: 87.85 E-value: 7.10e-22
S4/Hsp/ tRNA synthetase RNA-binding domain; The domain surface is populated by conserved, ...
1-66
5.98e-06
S4/Hsp/ tRNA synthetase RNA-binding domain; The domain surface is populated by conserved, charged residues that define a likely RNA-binding site; Found in stress proteins, ribosomal proteins and tRNA synthetases; This may imply a hitherto unrecognized functional similarity between these three protein classes.
Pssm-ID: 238095 [Multi-domain] Cd Length: 70 Bit Score: 43.01 E-value: 5.98e-06
S4 domain; The S4 domain is a small domain consisting of 60-65 amino acid residues that was ...
1-46
3.61e-03
S4 domain; The S4 domain is a small domain consisting of 60-65 amino acid residues that was detected in the bacterial ribosomal protein S4, eukaryotic ribosomal S9, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast protein containing a pseudouridine synthetase and a deaminase domain, bacterial tyrosyl-tRNA synthetases, and a number of uncharacterized, small proteins that may be involved in translation regulation. The S4 domain probably mediates binding to RNA.
Pssm-ID: 396182 [Multi-domain] Cd Length: 48 Bit Score: 34.39 E-value: 3.61e-03
Pseudouridine synthase, Escherichia coli RluF like; This group is comprised of bacterial ...
61-224
5.78e-104
Pseudouridine synthase, Escherichia coli RluF like; This group is comprised of bacterial proteins similar to Escherichia coli RluF. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. E.coli RluF makes psi2604 in 23S RNA. psi2604 has only been detected in E. coli. It is absent from other eubacteria despite a precursor U at that site and from eukarya and archea which lack a precursor U at that site.
Pssm-ID: 211328 [Multi-domain] Cd Length: 164 Bit Score: 297.30 E-value: 5.78e-104
Pseudouridylate synthase RsuA, specific for 16S rRNA U516 and 23S rRNA U2605 [Translation, ...
1-218
2.15e-99
Pseudouridylate synthase RsuA, specific for 16S rRNA U516 and 23S rRNA U2605 [Translation, ribosomal structure and biogenesis]; Pseudouridylate synthase RsuA, specific for 16S rRNA U516 and 23S rRNA U2605 is part of the Pathway/BioSystem: 16S rRNA modification
Pssm-ID: 440800 [Multi-domain] Cd Length: 226 Bit Score: 288.09 E-value: 2.15e-99
Pseudouridine synthases, RsuA subfamily; Pseudouridine synthases are responsible for the ...
62-201
1.17e-53
Pseudouridine synthases, RsuA subfamily; Pseudouridine synthases are responsible for the synthesis of pseudouridine from uracil in ribosomal RNA. The RsuA subfamily includes Pseudouridine Synthase similar to Ribosomal small subunit pseudouridine 516 synthase. Most of the proteins in this family are bacterial proteins.
Pssm-ID: 211347 [Multi-domain] Cd Length: 146 Bit Score: 169.21 E-value: 1.17e-53
pseudouridine synthase; This model identifies panels of pseudouridine synthase enzymes that ...
96-219
6.34e-51
pseudouridine synthase; This model identifies panels of pseudouridine synthase enzymes that RNA modifications involved in maturing the protein translation apparatus. Counts per genome vary: two in Staphylococcus aureus, three in Pseudomonas putida, four in E. coli, etc. [Protein synthesis, tRNA and rRNA base modification]
Pssm-ID: 272902 Cd Length: 128 Bit Score: 161.73 E-value: 6.34e-51
Pseudouridine synthase, Escherichia coli RsuA like; This group is comprised of eukaryotic and ...
61-222
1.09e-46
Pseudouridine synthase, Escherichia coli RsuA like; This group is comprised of eukaryotic and bacterial proteins similar to Escherichia coli RsuA. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. E.coli RsuA makes psi516 in 16S RNA. Psi at this position is not generally conserved in other organisms.
Pssm-ID: 211327 [Multi-domain] Cd Length: 167 Bit Score: 152.29 E-value: 1.09e-46
Pseudouridine synthase, Rsu/Rlu family; This group is comprised of eukaryotic, bacterial and ...
62-201
2.28e-36
Pseudouridine synthase, Rsu/Rlu family; This group is comprised of eukaryotic, bacterial and archeal proteins similar to eight site specific Escherichia coli pseudouridine synthases: RsuA, RluA, RluB, RluC, RluD, RluE, RluF and TruA. Pseudouridine synthases catalyze the isomerization of specific uridines in a n RNA molecule to pseudouridines (5-ribosyluracil, psi) requiring no cofactors. E. coli RluC for example makes psi955, 2504 and 2580 in 23S RNA. Some psi sites such as psi1917 in 23S RNA made by RluD are universally conserved. Other psi sites occur in a more restricted fashion, for example psi2819 in 21S mitochondrial ribosomal RNA made by S. cerevisiae Pus5p is only found in mitochondrial large subunit rRNAs from some other species and in gram negative bacteria. The E. coli counterpart of this psi residue is psi2580 in 23S rRNA. psi2604in 23S RNA made by RluF has only been detected in E.coli.
Pssm-ID: 211325 [Multi-domain] Cd Length: 154 Bit Score: 125.18 E-value: 2.28e-36
Pseudouridine synthase, Escherichia coli RluE; This group is comprised of bacterial proteins ...
62-209
2.35e-36
Pseudouridine synthase, Escherichia coli RluE; This group is comprised of bacterial proteins similar to E. coli RluE. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. Escherichia coli RluE makes psi2457 in 23S RNA. psi2457 is not universally conserved.
Pssm-ID: 211334 [Multi-domain] Cd Length: 168 Bit Score: 125.96 E-value: 2.35e-36
Pseudouridine synthase, Escherichia coli RluB like; This group is comprised of bacterial and ...
63-219
4.72e-33
Pseudouridine synthase, Escherichia coli RluB like; This group is comprised of bacterial and eukaryotic proteins similar to E. coli RluB. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. E.coli RluB makes psi2605 in 23S RNA. psi2605 has been detected in eubacteria but, not in eukarya and archea despite the presence of a precursor U at that site.
Pssm-ID: 211330 [Multi-domain] Cd Length: 167 Bit Score: 117.41 E-value: 4.72e-33
Pseudouridine synthase, a subgroup of the RsuA family; This group is comprised of bacterial ...
59-221
6.91e-26
Pseudouridine synthase, a subgroup of the RsuA family; This group is comprised of bacterial proteins assigned to the RsuA family of pseudouridine synthases. Pseudouridine synthases catalyze the isomerization of specific uridines in an RNA molecule to pseudouridines (5-ribosyluracil, psi). No cofactors are required. The TruA family is comprised of proteins related to Escherichia coli RsuA.
Pssm-ID: 211329 [Multi-domain] Cd Length: 177 Bit Score: 99.02 E-value: 6.91e-26
RNA pseudouridylate synthase; Members of this family are involved in modifying bases in RNA ...
62-185
7.10e-22
RNA pseudouridylate synthase; Members of this family are involved in modifying bases in RNA molecules. They carry out the conversion of uracil bases to pseudouridine. This family includes RluD, a pseudouridylate synthase that converts specific uracils to pseudouridine in 23S rRNA. RluA from E. coli converts bases in both rRNA and tRNA.
Pssm-ID: 459961 [Multi-domain] Cd Length: 151 Bit Score: 87.85 E-value: 7.10e-22
S4/Hsp/ tRNA synthetase RNA-binding domain; The domain surface is populated by conserved, ...
1-66
5.98e-06
S4/Hsp/ tRNA synthetase RNA-binding domain; The domain surface is populated by conserved, charged residues that define a likely RNA-binding site; Found in stress proteins, ribosomal proteins and tRNA synthetases; This may imply a hitherto unrecognized functional similarity between these three protein classes.
Pssm-ID: 238095 [Multi-domain] Cd Length: 70 Bit Score: 43.01 E-value: 5.98e-06
S4 domain; The S4 domain is a small domain consisting of 60-65 amino acid residues that was ...
1-46
3.61e-03
S4 domain; The S4 domain is a small domain consisting of 60-65 amino acid residues that was detected in the bacterial ribosomal protein S4, eukaryotic ribosomal S9, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast protein containing a pseudouridine synthetase and a deaminase domain, bacterial tyrosyl-tRNA synthetases, and a number of uncharacterized, small proteins that may be involved in translation regulation. The S4 domain probably mediates binding to RNA.
Pssm-ID: 396182 [Multi-domain] Cd Length: 48 Bit Score: 34.39 E-value: 3.61e-03
Pseudouridine synthase, RluA family; This group is comprised of eukaryotic, bacterial and ...
62-131
3.84e-03
Pseudouridine synthase, RluA family; This group is comprised of eukaryotic, bacterial and archeal proteins similar to eight site specific Escherichia coli pseudouridine synthases: RsuA, RluA, RluB, RluC, RluD, RluE, RluF and TruA. Pseudouridine synthases catalyze the isomerization of specific uridines in a n RNA molecule to pseudouridines (5-ribosyluracil, psi) requiring no cofactors. E. coli RluC for example makes psi955, 2504 and 2580 in 23S RNA. Some psi sites such as psi1917 in 23S RNA made by RluD are universally conserved. Other psi sites occur in a more restricted fashion, for example psi2819 in 21S mitochondrial ribosomal RNA made by S. cerevisiae Pus5p is only found in mitochondrial large subunit rRNAs from some other species and in gram negative bacteria. The E. coli counterpart of this psi residue is psi2580 in 23S rRNA. psi2604in 23S RNA made by RluF has only been detected in E.coli.
Pssm-ID: 211346 [Multi-domain] Cd Length: 185 Bit Score: 36.93 E-value: 3.84e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options