PLP-dependent aminotransferase family protein may combine pyridoxal phosphate with an alpha-amino acid to form a Schiff base or aldimine intermediate, which then acts as the substrate in a reaction such as a transamination, racemization, or decarboxylation
Aspartate aminotransferase (AAT) superfamily (fold type I) of pyridoxal phosphate (PLP) ...
1-337
1.91e-156
Aspartate aminotransferase (AAT) superfamily (fold type I) of pyridoxal phosphate (PLP)-dependent enzymes. PLP combines with an alpha-amino acid to form a compound called a Schiff base or aldimine intermediate, which depending on the reaction, is the substrate in four kinds of reactions (1) transamination (movement of amino groups), (2) racemization (redistribution of enantiomers), (3) decarboxylation (removing COOH groups), and (4) various side-chain reactions depending on the enzyme involved. Pyridoxal phosphate (PLP) dependent enzymes were previously classified into alpha, beta and gamma classes, based on the chemical characteristics (carbon atom involved) of the reaction they catalyzed. The availability of several structures allowed a comprehensive analysis of the evolutionary classification of PLP dependent enzymes, and it was found that the functional classification did not always agree with the evolutionary history of these enzymes. Structure and sequence analysis has revealed that the PLP dependent enzymes can be classified into four major groups of different evolutionary origin: aspartate aminotransferase superfamily (fold type I), tryptophan synthase beta superfamily (fold type II), alanine racemase superfamily (fold type III), and D-amino acid superfamily (fold type IV) and Glycogen phophorylase family (fold type V).
The actual alignment was detected with superfamily member PRK10534:
Pssm-ID: 450240 [Multi-domain] Cd Length: 333 Bit Score: 441.51 E-value: 1.91e-156
Low-specificity threonine aldolase (TA). This family belongs to pyridoxal phosphate (PLP) ...
3-333
4.15e-109
Low-specificity threonine aldolase (TA). This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). TA catalyzes the conversion of L-threonine or L-allo-threonine to glycine and acetaldehyde in a secondary glycine biosynthetic pathway.
Pssm-ID: 99748 [Multi-domain] Cd Length: 338 Bit Score: 321.59 E-value: 4.15e-109
Low-specificity threonine aldolase (TA). This family belongs to pyridoxal phosphate (PLP) ...
3-333
4.15e-109
Low-specificity threonine aldolase (TA). This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). TA catalyzes the conversion of L-threonine or L-allo-threonine to glycine and acetaldehyde in a secondary glycine biosynthetic pathway.
Pssm-ID: 99748 [Multi-domain] Cd Length: 338 Bit Score: 321.59 E-value: 4.15e-109
Aspartate aminotransferase (AAT) superfamily (fold type I) of pyridoxal phosphate (PLP) ...
39-210
9.89e-08
Aspartate aminotransferase (AAT) superfamily (fold type I) of pyridoxal phosphate (PLP)-dependent enzymes. PLP combines with an alpha-amino acid to form a compound called a Schiff base or aldimine intermediate, which depending on the reaction, is the substrate in four kinds of reactions (1) transamination (movement of amino groups), (2) racemization (redistribution of enantiomers), (3) decarboxylation (removing COOH groups), and (4) various side-chain reactions depending on the enzyme involved. Pyridoxal phosphate (PLP) dependent enzymes were previously classified into alpha, beta and gamma classes, based on the chemical characteristics (carbon atom involved) of the reaction they catalyzed. The availability of several structures allowed a comprehensive analysis of the evolutionary classification of PLP dependent enzymes, and it was found that the functional classification did not always agree with the evolutionary history of these enzymes. Structure and sequence analysis has revealed that the PLP dependent enzymes can be classified into four major groups of different evolutionary origin: aspartate aminotransferase superfamily (fold type I), tryptophan synthase beta superfamily (fold type II), alanine racemase superfamily (fold type III), and D-amino acid superfamily (fold type IV) and Glycogen phophorylase family (fold type V).
Pssm-ID: 99742 [Multi-domain] Cd Length: 170 Bit Score: 51.23 E-value: 9.89e-08
DegT/DnrJ/EryC1/StrS aminotransferase family; The members of this family are probably all ...
34-313
5.06e-06
DegT/DnrJ/EryC1/StrS aminotransferase family; The members of this family are probably all pyridoxal-phosphate-dependent aminotransferase enzymes with a variety of molecular functions. The family includes StsA, StsC and StsS. The aminotransferase activity was demonstrated for purified StsC protein as the L-glutamine:scyllo-inosose aminotransferase EC:2.6.1.50, which catalyzes the first amino transfer in the biosynthesis of the streptidine subunit of streptomycin.
Pssm-ID: 395827 Cd Length: 360 Bit Score: 47.66 E-value: 5.06e-06
KBL_like; this family belongs to the pyridoxal phosphate (PLP)-dependent aspartate ...
31-334
3.18e-05
KBL_like; this family belongs to the pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The major groups in this CD corresponds to serine palmitoyltransferase (SPT), 5-aminolevulinate synthase (ALAS), 8-amino-7-oxononanoate synthase (AONS), and 2-amino-3-ketobutyrate CoA ligase (KBL). SPT is responsible for the condensation of L-serine with palmitoyl-CoA to produce 3-ketodihydrospingosine, the reaction of the first step in sphingolipid biosynthesis. ALAS is involved in heme biosynthesis; it catalyzes the synthesis of 5-aminolevulinic acid from glycine and succinyl-coenzyme A. AONS catalyses the decarboxylative condensation of l-alanine and pimeloyl-CoA in the first committed step of biotin biosynthesis. KBL catalyzes the second reaction step of the metabolic degradation pathway for threonine converting 2-amino-3-ketobutyrate, to glycine and acetyl-CoA. The members of this CD are widely found in all three forms of life.
Pssm-ID: 99747 [Multi-domain] Cd Length: 349 Bit Score: 45.24 E-value: 3.18e-05
Acetyl ornithine aminotransferase family. This family belongs to pyridoxal phosphate (PLP) ...
194-335
8.02e-04
Acetyl ornithine aminotransferase family. This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The major groups in this CD correspond to ornithine aminotransferase, acetylornithine aminotransferase, alanine-glyoxylate aminotransferase, dialkylglycine decarboxylase, 4-aminobutyrate aminotransferase, beta-alanine-pyruvate aminotransferase, adenosylmethionine-8-amino-7-oxononanoate aminotransferase, and glutamate-1-semialdehyde 2,1-aminomutase. All the enzymes belonging to this family act on basic amino acids and their derivatives are involved in transamination or decarboxylation.
Pssm-ID: 99735 [Multi-domain] Cd Length: 413 Bit Score: 41.01 E-value: 8.02e-04
Glutamate or tyrosine decarboxylase or a related PLP-dependent protein [Amino acid transport ...
51-337
3.62e-03
Glutamate or tyrosine decarboxylase or a related PLP-dependent protein [Amino acid transport and metabolism]; Glutamate or tyrosine decarboxylase or a related PLP-dependent protein is part of the Pathway/BioSystem: Pantothenate/CoA biosynthesis
Pssm-ID: 439846 [Multi-domain] Cd Length: 460 Bit Score: 39.04 E-value: 3.62e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options