SRPBCC family protein [Rhodococcus aetherivorans]
SRPBCC family protein( domain architecture ID 51693)
SRPBCC (START/RHOalphaC/PITP/Bet v1/CoxG/CalC) family protein may have a deep hydrophobic ligand-binding pocket
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
SRPBCC super family | cl14643 | START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) ligand-binding domain superfamily; SRPBCC ... |
1-212 | 1.28e-65 | ||||
START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) ligand-binding domain superfamily; SRPBCC domains have a deep hydrophobic ligand-binding pocket; they bind diverse ligands. Included in this superfamily are the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains of mammalian STARD1-STARD15, and the C-terminal catalytic domains of the alpha oxygenase subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs_alpha_C), as well as the SRPBCC domains of phosphatidylinositol transfer proteins (PITPs), Bet v 1 (the major pollen allergen of white birch, Betula verrucosa), CoxG, CalC, and related proteins. Other members of this superfamily include PYR/PYL/RCAR plant proteins, the aromatase/cyclase (ARO/CYC) domains of proteins such as Streptomyces glaucescens tetracenomycin, and the SRPBCC domains of Streptococcus mutans Smu.440 and related proteins. The actual alignment was detected with superfamily member cd08881: Pssm-ID: 472699 [Multi-domain] Cd Length: 206 Bit Score: 202.09 E-value: 1.28e-65
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
RHO_alpha_C_NDO-like | cd08881 | C-terminal catalytic domain of the oxygenase alpha subunit of naphthalene 1,2-dioxygenase (NDO) ... |
1-212 | 1.28e-65 | ||||
C-terminal catalytic domain of the oxygenase alpha subunit of naphthalene 1,2-dioxygenase (NDO) and related aromatic ring hydroxylating dioxygenases; C-terminal catalytic domain of the oxygenase alpha subunit of naphthalene 1,2-dioxygenase (NDO) and related Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs, also known as aromatic ring hydroxylating dioxygenases). This domain binds non-heme Fe(II). RHOs utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents form the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and a C-terminal domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. Proteins belonging to this subgroup include the terminal oxygenase alpha subunits of biphenyl dioxygenase, cumene dioxygenase from Pseudomonas fluorescens IP01, ethylbenzene dioxygenase, naphthalene 1,2-dioxygenase, nitrobenzene dioxygenase from Comamonas sp. strain JS765, toluene 2,3-dioxygenase from Pseudomonas putida F1, dioxin dioxygenase of Sphingomonas sp. Strain RW1, and the polycyclic aromatic hydrocarbons (PAHs)degrading ring-hydroxylating dioxygenase from Sphingomonas CHY-1. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Pssm-ID: 176890 [Multi-domain] Cd Length: 206 Bit Score: 202.09 E-value: 1.28e-65
|
||||||||
Ring_hydroxyl_A | pfam00848 | Ring hydroxylating alpha subunit (catalytic domain); This family is the catalytic domain of ... |
1-215 | 1.12e-13 | ||||
Ring hydroxylating alpha subunit (catalytic domain); This family is the catalytic domain of aromatic-ring- hydroxylating dioxygenase systems. The active site contains a non-heme ferrous ion coordinated by three ligands. Pssm-ID: 425905 Cd Length: 210 Bit Score: 67.48 E-value: 1.12e-13
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
RHO_alpha_C_NDO-like | cd08881 | C-terminal catalytic domain of the oxygenase alpha subunit of naphthalene 1,2-dioxygenase (NDO) ... |
1-212 | 1.28e-65 | ||||
C-terminal catalytic domain of the oxygenase alpha subunit of naphthalene 1,2-dioxygenase (NDO) and related aromatic ring hydroxylating dioxygenases; C-terminal catalytic domain of the oxygenase alpha subunit of naphthalene 1,2-dioxygenase (NDO) and related Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs, also known as aromatic ring hydroxylating dioxygenases). This domain binds non-heme Fe(II). RHOs utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents form the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and a C-terminal domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. Proteins belonging to this subgroup include the terminal oxygenase alpha subunits of biphenyl dioxygenase, cumene dioxygenase from Pseudomonas fluorescens IP01, ethylbenzene dioxygenase, naphthalene 1,2-dioxygenase, nitrobenzene dioxygenase from Comamonas sp. strain JS765, toluene 2,3-dioxygenase from Pseudomonas putida F1, dioxin dioxygenase of Sphingomonas sp. Strain RW1, and the polycyclic aromatic hydrocarbons (PAHs)degrading ring-hydroxylating dioxygenase from Sphingomonas CHY-1. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Pssm-ID: 176890 [Multi-domain] Cd Length: 206 Bit Score: 202.09 E-value: 1.28e-65
|
||||||||
RHO_alpha_C_AntDO-like | cd08879 | C-terminal catalytic domain of the oxygenase alpha subunit of Pseudomonas resinovorans strain ... |
1-209 | 1.12e-19 | ||||
C-terminal catalytic domain of the oxygenase alpha subunit of Pseudomonas resinovorans strain CA10 anthranilate 1,2-dioxygenase and related aromatic ring hydroxylating dioxygenases; C-terminal catalytic domain of the oxygenase alpha subunit of anthranilate 1,2-dioxygenase (AntDO) and related Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs, also known as aromatic ring hydroxylating dioxygenases). RHOs utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and the C-terminal catalytic domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. Oxygenases belonging to this subgroup include the alpha subunits of AntDO, aniline dioxygenase, Acinetobacter calcoaceticus benzoate 1,2-dioxygenase, 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS, 2,4,5-trichlorophenoxyacetic acid oxygenase from Pseudomonas cepacia AC1100, 2,4-dichlorophenoxyacetic acid oxygenase from Bradyrhizobium sp. strain HW13, p-cumate 2,3-dioxygenase, 2-halobenzoate 1,2-dioxygenase form Pseudomonas cepacia 2CBS, and Pseudomonas putida IacC, which may be involved in the catabolism of the plant hormone indole 3-acetic acid. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Pssm-ID: 176888 [Multi-domain] Cd Length: 237 Bit Score: 84.32 E-value: 1.12e-19
|
||||||||
Ring_hydroxyl_A | pfam00848 | Ring hydroxylating alpha subunit (catalytic domain); This family is the catalytic domain of ... |
1-215 | 1.12e-13 | ||||
Ring hydroxylating alpha subunit (catalytic domain); This family is the catalytic domain of aromatic-ring- hydroxylating dioxygenase systems. The active site contains a non-heme ferrous ion coordinated by three ligands. Pssm-ID: 425905 Cd Length: 210 Bit Score: 67.48 E-value: 1.12e-13
|
||||||||
RHO_alpha_C | cd00680 | C-terminal catalytic domain of the oxygenase alpha subunit of Rieske-type non-heme iron ... |
87-164 | 3.90e-05 | ||||
C-terminal catalytic domain of the oxygenase alpha subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases; C-terminal catalytic domain of the oxygenase alpha subunit of Rieske-type non-heme iron aromatic ring-hydroxylating oxygenase (RHO) family. RHOs, also known as aromatic ring hydroxylating dioxygenases, utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC), and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and a C-terminal domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. Oxygenases belonging to this family include the alpha subunits of Pseudomonas resinovorans strain CA10 anthranilate 1,2-dioxygenase, Stenotrophomonas maltophilia dicamba O-demethylase, Ralstonia sp. U2 salicylate-5-hydroxylase, Cycloclasticus sp. strain A5 polycyclic aromatic hydrocarbon dioxygenase, toluene 2,3-dioxygenase from Pseudomonas putida F1, dioxin dioxygenase of Sphingomonas sp. Strain RW1, plant choline monooxygenase, and the polycyclic aromatic hydrocarbon (PAH)-degrading ring-hydroxylating dioxygenase from Sphingomonas CHY-1. This group also includes the C-terminal catalytic domains of MupW, part of the mupirocin biosynthetic gene cluster in Pseudomonas fluorescens, and Pseudomonas aeruginosa GbcA (glycine betaine catabolism A). This family belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Pssm-ID: 176852 [Multi-domain] Cd Length: 188 Bit Score: 42.94 E-value: 3.90e-05
|
||||||||
RHO_alpha_C_ahdA1c-like | cd08880 | C-terminal catalytic domain of the large/alpha subunit (ahdA1c) of a ring-hydroxylating ... |
90-214 | 1.74e-04 | ||||
C-terminal catalytic domain of the large/alpha subunit (ahdA1c) of a ring-hydroxylating dioxygenase from Sphingomonas sp. strain P2 and related proteins; C-terminal catalytic domain of the large subunit (ahdA1c) of the AhdA3A4A2cA1c salicylate 1-hydroxylase complex from Sphingomonas sp. strain P2, and related Rieske-type non-heme iron aromatic ring-hydroxylating oxygenases (RHOs, also known as aromatic ring hydroxylating dioxygenases). AhdA3A4A2cA1c is one of three known isofunctional salicylate 1-hydroxylase complexes in strain P2, involved in phenanthrene degradation, which catalyze the monooxygenation of salicylate, the metabolite of phenanthene degradation, to produce catechol. This complex prefers salicylate over other substituted salicylates; the other two salicylate 1-hydroxylases have different substrate preferences. RHOs utilize non-heme Fe(II) to catalyze the addition of hydroxyl groups to the aromatic ring, an initial step in the oxidative degradation of aromatic compounds. RHOs are composed of either two or three protein components, and are comprised of an electron transport chain (ETC) and an oxygenase. The ETC transfers reducing equivalents from the electron donor to the oxygenase component, which in turn transfers electrons to the oxygen molecules. The oxygenase components are oligomers, either (alpha)n or (alpha)n(beta)n. The alpha subunits are the catalytic components and have an N-terminal domain, which binds a Rieske-like 2Fe-2S cluster, and a C-terminal domain which binds the non-heme Fe(II). The Fe(II) is co-ordinated by conserved His and Asp residues. Other oxygenases belonging to this subgroup include the alpha subunits of anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1, a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5 (PhnA dioxygenase), salicylate-5-hydroxylase from Ralstonia sp. U2, ortho-halobenzoate 1,2-dioxygenase from Pseudomonas aeruginosa strain JB2, and the terephthalate 1,2-dioxygenase system from Delftia tsuruhatensis strain T7. This subfamily belongs to the SRPBCC (START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC) domain superfamily of proteins that bind hydrophobic ligands. SRPBCC domains have a deep hydrophobic ligand-binding pocket. Pssm-ID: 176889 Cd Length: 222 Bit Score: 41.48 E-value: 1.74e-04
|
||||||||
Blast search parameters | ||||
|