non-heme ferritin-like protein belongs to a broad superfamily of ferritin-like diiron-carboxylate proteins that catalyze dioxygen-dependent oxidation-hydroxylation reactions within diiron centers
nonheme-containing ferritins; Nonheme Ferritin domain, found in archaea and bacteria, is a ...
6-145
5.72e-44
nonheme-containing ferritins; Nonheme Ferritin domain, found in archaea and bacteria, is a member of a broad superfamily of ferritin-like diiron-carboxylate proteins. The ferritin protein shell is composed of 24 protein subunits arranged in 432 symmetry. Each protein subunit, a four-helix bundle with a fifth short terminal helix, contains a dinuclear ferroxidase center (H type). Unique to this group of proteins is a third metal site in the ferroxidase center. Iron storage involves the uptake of iron (II) at the protein shell, its oxidation by molecular oxygen at the ferroxidase centers, and the movement of iron (III) into the cavity for deposition as ferrihydrite.
Pssm-ID: 153113 Cd Length: 156 Bit Score: 142.63 E-value: 5.72e-44
nonheme-containing ferritins; Nonheme Ferritin domain, found in archaea and bacteria, is a ...
6-145
5.72e-44
nonheme-containing ferritins; Nonheme Ferritin domain, found in archaea and bacteria, is a member of a broad superfamily of ferritin-like diiron-carboxylate proteins. The ferritin protein shell is composed of 24 protein subunits arranged in 432 symmetry. Each protein subunit, a four-helix bundle with a fifth short terminal helix, contains a dinuclear ferroxidase center (H type). Unique to this group of proteins is a third metal site in the ferroxidase center. Iron storage involves the uptake of iron (II) at the protein shell, its oxidation by molecular oxygen at the ferroxidase centers, and the movement of iron (III) into the cavity for deposition as ferrihydrite.
Pssm-ID: 153113 Cd Length: 156 Bit Score: 142.63 E-value: 5.72e-44
Ferritin iron storage proteins; Ferritins are the primary iron storage proteins of most living ...
10-128
1.77e-06
Ferritin iron storage proteins; Ferritins are the primary iron storage proteins of most living organisms and members of a broad superfamily of ferritin-like diiron-carboxylate proteins. The iron-free (apoferritin) ferritin molecule is a protein shell composed of 24 protein chains arranged in 432 symmetry. Iron storage involves the uptake of iron (II) at the protein shell, its oxidation by molecular oxygen at the dinuclear ferroxidase centers, and the movement of iron (III) into the cavity for deposition as ferrihydrite; the protein shell can hold up to 4500 iron atoms. In vertebrates, two types of chains (subunits) have been characterized, H or M (fast) and L (slow), which differ in rates of iron uptake and mineralization. Bacterial non-heme ferritins are composed only of H chains. Fe(II) oxidation in the H/M subunits take place initially at the ferroxidase center, a carboxylate-bridged diiron center, located within the subunit four-helix bundle. In a complementary role, negatively charged residues on the protein shell inner surface of the L subunits promote ferrihydrite nucleation. Most plant ferritins combine both oxidase and nucleation functions in one chain: they have four interior glutamate residues as well as seven ferroxidase center residues.
Pssm-ID: 153098 Cd Length: 160 Bit Score: 45.33 E-value: 1.77e-06
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options