ABC transporter permease is the transmembrane subunit found in a periplasmic binding protein (PBP)-dependent ABC transport system, which may be involved in the transport of one or more from a variety of substrates including sugars, ions, amino acids, and peptides, among others
daunorubicin resistance ABC transporter membrane protein; This model describes daunorubicin ...
169-326
1.59e-16
daunorubicin resistance ABC transporter membrane protein; This model describes daunorubicin resistance ABC transporter, membrane associated protein in bacteria and archaea. The protein associated with effux of the drug, daunorubicin. This transport system belong to the larger ATP-Binding Cassette (ABC) transporter superfamily. The characteristic feature of these transporter is the obligatory coupling of ATP hydrolysis to substrate translocation. The minimal configuration of bacterial ABC transport system: an ATPase or ATP binding subunit; An integral membrane protein; a hydrophilic polypetpide, which likely functions as substrate binding protein. In eukaryotes proteins of similar function include p-gyco proteins, multidrug resistance protein etc. [Transport and binding proteins, Other]
Pssm-ID: 130314 [Multi-domain] Cd Length: 236 Bit Score: 77.89 E-value: 1.59e-16
lantibiotic immunity ABC transporter permease (also called ABC-2 transporter permease) subunit and similar proteins; This subfamily contains lantibiotic ABC transporter permease subunits which are highly hydrophobic, integral membrane proteins, and part of the bacitracin ABC transport system that confers resistance to the Gram-positive bacteria in which this system operates, particularly to type-A lantibiotics. Lantibiotics are small peptides, produced by Gram-positive bacteria, which are ribosomally-synthesized as pre-peptides and act by disrupting membrane integrity. Genes encoding the lantibiotic ABC transporter subunits are highly organized in operons containing all the genes required for maturation, transport, immunity, and synthesis. For example, in Lactococcus lactis, the lantibiotic nisin is active against other Gram-positive bacteria via various modes of actions; however, its self-protection against the pore-forming nisin is mediated by the ABC transporter composed of NisF, NisE and NisG; the NisG permease subunit transports nisin to the surface and expels it from the membrane. This family includes mostly uncharacterized transport permease subunits that transport lantibiotics to the surface and expel them from the membrane.
Pssm-ID: 409634 Cd Length: 235 Bit Score: 39.10 E-value: 2.52e-03
daunorubicin resistance ABC transporter membrane protein; This model describes daunorubicin ...
169-326
1.59e-16
daunorubicin resistance ABC transporter membrane protein; This model describes daunorubicin resistance ABC transporter, membrane associated protein in bacteria and archaea. The protein associated with effux of the drug, daunorubicin. This transport system belong to the larger ATP-Binding Cassette (ABC) transporter superfamily. The characteristic feature of these transporter is the obligatory coupling of ATP hydrolysis to substrate translocation. The minimal configuration of bacterial ABC transport system: an ATPase or ATP binding subunit; An integral membrane protein; a hydrophilic polypetpide, which likely functions as substrate binding protein. In eukaryotes proteins of similar function include p-gyco proteins, multidrug resistance protein etc. [Transport and binding proteins, Other]
Pssm-ID: 130314 [Multi-domain] Cd Length: 236 Bit Score: 77.89 E-value: 1.59e-16
ABC-type transport system involved in multi-copper enzyme maturation, permease component ...
165-302
4.08e-16
ABC-type transport system involved in multi-copper enzyme maturation, permease component [Posttranslational modification, protein turnover, chaperones];
Pssm-ID: 440888 [Multi-domain] Cd Length: 201 Bit Score: 76.01 E-value: 4.08e-16
lantibiotic immunity ABC transporter permease (also called ABC-2 transporter permease) subunit and similar proteins; This subfamily contains lantibiotic ABC transporter permease subunits which are highly hydrophobic, integral membrane proteins, and part of the bacitracin ABC transport system that confers resistance to the Gram-positive bacteria in which this system operates, particularly to type-A lantibiotics. Lantibiotics are small peptides, produced by Gram-positive bacteria, which are ribosomally-synthesized as pre-peptides and act by disrupting membrane integrity. Genes encoding the lantibiotic ABC transporter subunits are highly organized in operons containing all the genes required for maturation, transport, immunity, and synthesis. For example, in Lactococcus lactis, the lantibiotic nisin is active against other Gram-positive bacteria via various modes of actions; however, its self-protection against the pore-forming nisin is mediated by the ABC transporter composed of NisF, NisE and NisG; the NisG permease subunit transports nisin to the surface and expels it from the membrane. This family includes mostly uncharacterized transport permease subunits that transport lantibiotics to the surface and expel them from the membrane.
Pssm-ID: 409634 Cd Length: 235 Bit Score: 39.10 E-value: 2.52e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options