MULTISPECIES: HAD-IA family hydrolase [Enterococcus]
HAD family hydrolase( domain architecture ID 229399)
HAD (haloacid dehalogenase) family hydrolase; the HAD family includes phosphoesterases, ATPases, phosphonatases, dehalogenases, and sugar phosphomutases acting on a remarkably diverse set of substrates
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
HAD_like super family | cl21460 | Haloacid Dehalogenase-like Hydrolases; The haloacid dehalogenase (HAD) superfamily includes ... |
3-177 | 7.01e-56 | ||||
Haloacid Dehalogenase-like Hydrolases; The haloacid dehalogenase (HAD) superfamily includes carbon and phosphorus hydrolases such as 2-haloalkonoate dehalogenase, epoxide hydrolase, phosphoserine phosphatase, phosphomannomutase, phosphoglycolate phosphatase, P-type ATPase, among others. These proteins catalyze nucleophilic substitution reactions at phosphorus or carbon centers, using a conserved Asp carboxylate in covalent catalysis. All members possess a conserve alpha/beta core domain, and many also possess a small cap domain, with varying folds and functions. The actual alignment was detected with superfamily member cd07523: Pssm-ID: 473868 [Multi-domain] Cd Length: 173 Bit Score: 174.87 E-value: 7.01e-56
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
HAD_YsbA-like | cd07523 | uncharacterized family of the haloacid dehalogenase-like superfamily, similar to the ... |
3-177 | 7.01e-56 | ||||
uncharacterized family of the haloacid dehalogenase-like superfamily, similar to the uncharacterized Lactococcus lactis YsbA; The specific function of Lactococcus lactis YsbA is unknown. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases Pssm-ID: 319825 [Multi-domain] Cd Length: 173 Bit Score: 174.87 E-value: 7.01e-56
|
||||||||
Gph | COG0546 | Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; |
1-201 | 1.18e-41 | ||||
Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; Pssm-ID: 440312 [Multi-domain] Cd Length: 214 Bit Score: 140.06 E-value: 1.18e-41
|
||||||||
HAD_2 | pfam13419 | Haloacid dehalogenase-like hydrolase; |
4-172 | 8.24e-28 | ||||
Haloacid dehalogenase-like hydrolase; Pssm-ID: 404323 [Multi-domain] Cd Length: 178 Bit Score: 103.43 E-value: 8.24e-28
|
||||||||
PRK13222 | PRK13222 | N-acetylmuramic acid 6-phosphate phosphatase MupP; |
7-201 | 6.78e-22 | ||||
N-acetylmuramic acid 6-phosphate phosphatase MupP; Pssm-ID: 237310 [Multi-domain] Cd Length: 226 Bit Score: 89.10 E-value: 6.78e-22
|
||||||||
HAD-SF-IA-v1 | TIGR01549 | haloacid dehalogenase superfamily, subfamily IA, variant 1 with third motif having Dx(3-4)D or ... |
4-171 | 3.07e-14 | ||||
haloacid dehalogenase superfamily, subfamily IA, variant 1 with third motif having Dx(3-4)D or Dx(3-4)E; This model represents part of one structural subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Subfamily I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Subfamily II consists of sequences in which the capping domain is found between the second and third motifs. Subfamily III sequences have no capping domain in either of these positions.The Subfamily IA and IB capping domains are predicted by PSI-PRED to consist of an alpha helical bundle. Subfamily I encompasses such a wide region of sequence space (the sequences are highly divergent) that representing it with a single model is impossible, resulting in an overly broad description which allows in many unrelated sequences. Subfamily IA and IB are separated based on an aparrent phylogenetic bifurcation. Subfamily IA is still too broad to model, but cannot be further subdivided into large chunks based on phylogenetic trees. Of the three motifs defining the HAD superfamily, the third has three variant forms: (1) hhhhsDxxx(x)(D/E), (2) hhhhssxxx(x)D and (3) hhhhDDxxx(x)s where _s_ refers to a small amino acid and _h_ to a hydrophobic one. All three of these variants are found in subfamily IA. Individual models were made based on seeds exhibiting only one of the variants each. Variant 1 (this model) is found in the enzymes phosphoglycolate phosphatase (TIGR01449) and enolase-phosphatase. These three variant models (see also TIGR01493 and TIGR01509) were created withthe knowledge that there will be overlap among them - this is by design and serves the purpose of eliminating the overlap with models of more distantly relatedHAD subfamilies caused by an overly broad single model. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273686 [Multi-domain] Cd Length: 164 Bit Score: 67.42 E-value: 3.07e-14
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
HAD_YsbA-like | cd07523 | uncharacterized family of the haloacid dehalogenase-like superfamily, similar to the ... |
3-177 | 7.01e-56 | ||||
uncharacterized family of the haloacid dehalogenase-like superfamily, similar to the uncharacterized Lactococcus lactis YsbA; The specific function of Lactococcus lactis YsbA is unknown. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases Pssm-ID: 319825 [Multi-domain] Cd Length: 173 Bit Score: 174.87 E-value: 7.01e-56
|
||||||||
Gph | COG0546 | Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; |
1-201 | 1.18e-41 | ||||
Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; Pssm-ID: 440312 [Multi-domain] Cd Length: 214 Bit Score: 140.06 E-value: 1.18e-41
|
||||||||
HAD_2 | pfam13419 | Haloacid dehalogenase-like hydrolase; |
4-172 | 8.24e-28 | ||||
Haloacid dehalogenase-like hydrolase; Pssm-ID: 404323 [Multi-domain] Cd Length: 178 Bit Score: 103.43 E-value: 8.24e-28
|
||||||||
YigB | COG1011 | FMN and 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB, HAD superfamily ... |
1-201 | 1.81e-24 | ||||
FMN and 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB, HAD superfamily (riboflavin biosynthesis) [Coenzyme transport and metabolism]; Pssm-ID: 440635 [Multi-domain] Cd Length: 220 Bit Score: 95.87 E-value: 1.81e-24
|
||||||||
PRK13222 | PRK13222 | N-acetylmuramic acid 6-phosphate phosphatase MupP; |
7-201 | 6.78e-22 | ||||
N-acetylmuramic acid 6-phosphate phosphatase MupP; Pssm-ID: 237310 [Multi-domain] Cd Length: 226 Bit Score: 89.10 E-value: 6.78e-22
|
||||||||
HAD_PGPase | cd16417 | Escherichia coli Gph phosphoglycolate phosphatase and related proteins; belongs to the ... |
5-199 | 6.64e-21 | ||||
Escherichia coli Gph phosphoglycolate phosphatase and related proteins; belongs to the haloacid dehalogenase-like superfamily; Phosphoglycolate phosphatase (PGP; EC 3.1.3.18) catalyzes the conversion of 2-phosphoglycolate into glycolate and phosphate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319854 [Multi-domain] Cd Length: 212 Bit Score: 86.13 E-value: 6.64e-21
|
||||||||
Hydrolase | pfam00702 | haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha ... |
1-171 | 1.16e-18 | ||||
haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha/beta hydrolase family (pfam00561). This family includes L-2-haloacid dehalogenase, epoxide hydrolases and phosphatases. The structure of the family consists of two domains. One is an inserted four helix bundle, which is the least well conserved region of the alignment, between residues 16 and 96 of Swiss:P24069. The rest of the fold is composed of the core alpha/beta domain. Those members with the characteriztic DxD triad at the N-terminus are probably phosphatidylglycerolphosphate (PGP) phosphatases involved in cardiolipin biosynthesis in the mitochondria. Pssm-ID: 459910 [Multi-domain] Cd Length: 191 Bit Score: 79.94 E-value: 1.16e-18
|
||||||||
HAD_PPase | cd02616 | pyrophosphatase similar to Bacillus subtilis PpaX; This family includes Bacillus subtilis PpaX ... |
2-201 | 4.80e-17 | ||||
pyrophosphatase similar to Bacillus subtilis PpaX; This family includes Bacillus subtilis PpaX which hydrolyzes pyrophosphate formed during serine-46-phosphorylated HPr (P-Ser-HPr) dephosphorylation by the bifunctional enzyme HPr kinase/phosphorylase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319797 [Multi-domain] Cd Length: 207 Bit Score: 75.78 E-value: 4.80e-17
|
||||||||
HAD_PGPase | cd07512 | haloacid dehalogenase-like superfamily phosphoglycolate phosphatase, similar to Rhodobacter ... |
5-178 | 4.04e-15 | ||||
haloacid dehalogenase-like superfamily phosphoglycolate phosphatase, similar to Rhodobacter sphaeroides CbbZ; Phosphoglycolate phosphatase catalyzes the dephosphorylation of phosphoglycolate; its activity requires divalent cations, especially Mg++. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319815 [Multi-domain] Cd Length: 214 Bit Score: 70.81 E-value: 4.04e-15
|
||||||||
HAD-SF-IA-v1 | TIGR01549 | haloacid dehalogenase superfamily, subfamily IA, variant 1 with third motif having Dx(3-4)D or ... |
4-171 | 3.07e-14 | ||||
haloacid dehalogenase superfamily, subfamily IA, variant 1 with third motif having Dx(3-4)D or Dx(3-4)E; This model represents part of one structural subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Subfamily I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Subfamily II consists of sequences in which the capping domain is found between the second and third motifs. Subfamily III sequences have no capping domain in either of these positions.The Subfamily IA and IB capping domains are predicted by PSI-PRED to consist of an alpha helical bundle. Subfamily I encompasses such a wide region of sequence space (the sequences are highly divergent) that representing it with a single model is impossible, resulting in an overly broad description which allows in many unrelated sequences. Subfamily IA and IB are separated based on an aparrent phylogenetic bifurcation. Subfamily IA is still too broad to model, but cannot be further subdivided into large chunks based on phylogenetic trees. Of the three motifs defining the HAD superfamily, the third has three variant forms: (1) hhhhsDxxx(x)(D/E), (2) hhhhssxxx(x)D and (3) hhhhDDxxx(x)s where _s_ refers to a small amino acid and _h_ to a hydrophobic one. All three of these variants are found in subfamily IA. Individual models were made based on seeds exhibiting only one of the variants each. Variant 1 (this model) is found in the enzymes phosphoglycolate phosphatase (TIGR01449) and enolase-phosphatase. These three variant models (see also TIGR01493 and TIGR01509) were created withthe knowledge that there will be overlap among them - this is by design and serves the purpose of eliminating the overlap with models of more distantly relatedHAD subfamilies caused by an overly broad single model. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273686 [Multi-domain] Cd Length: 164 Bit Score: 67.42 E-value: 3.07e-14
|
||||||||
YcjU | COG0637 | Beta-phosphoglucomutase, HAD superfamily [Carbohydrate transport and metabolism]; |
5-198 | 3.11e-14 | ||||
Beta-phosphoglucomutase, HAD superfamily [Carbohydrate transport and metabolism]; Pssm-ID: 440402 [Multi-domain] Cd Length: 208 Bit Score: 68.31 E-value: 3.11e-14
|
||||||||
HAD_like | cd01427 | Haloacid dehalogenase-like hydrolases; The haloacid dehalogenase-like (HAD) superfamily ... |
83-177 | 1.24e-12 | ||||
Haloacid dehalogenase-like hydrolases; The haloacid dehalogenase-like (HAD) superfamily includes L-2-haloacid dehalogenase, epoxide hydrolase, phosphoserine phosphatase, phosphomannomutase, phosphoglycolate phosphatase, P-type ATPase, and many others. This superfamily includes a variety of enzymes that catalyze the cleavage of substrate C-Cl, P-C, and P-OP bonds via nucleophilic substitution pathways. All of which use a nucleophilic aspartate in their phosphoryl transfer reaction. They catalyze nucleophilic substitution reactions at phosphorus or carbon centers, using a conserved Asp carboxylate in covalent catalysis. All members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. Members of this superfamily are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319763 [Multi-domain] Cd Length: 106 Bit Score: 61.64 E-value: 1.24e-12
|
||||||||
HAD_5NT | cd04302 | haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to the Pseudomonas aeruginosa PA0065; ... |
3-201 | 3.95e-11 | ||||
haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to the Pseudomonas aeruginosa PA0065; 5'-nucleotidases dephosphorylate nucleoside 5'-monophosphates to nucleosides and inorganic phosphate. Purified Pseudomonas aeruginosa PA0065 displayed high activity toward 5'-UMP and 5'-IMP, significant activity against 5'-XMP and 5'-TMP, and low activity against 5'-CMP. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319798 [Multi-domain] Cd Length: 209 Bit Score: 59.91 E-value: 3.95e-11
|
||||||||
CTE7 | TIGR02253 | HAD superfamily (subfamily IA) hydrolase, TIGR02253; This family of sequences from archaea and ... |
2-199 | 6.66e-11 | ||||
HAD superfamily (subfamily IA) hydrolase, TIGR02253; This family of sequences from archaea and metazoans includes the human uncharacterized protein CTE7. Pyrococcus species appear to have three different forms of this enzyme, so it is unclear whether all members of this family have the same function. This family is a member of the haloacid dehalogenase (HAD) superfamily of hydrolases which are characterized by three conserved sequence motifs. By virtue of an alpha helical domain in-between the first and second conserved motif, this family is a member of subfamily IA (TIGR01549). Pssm-ID: 274057 [Multi-domain] Cd Length: 221 Bit Score: 59.34 E-value: 6.66e-11
|
||||||||
Hydrolase_like | pfam13242 | HAD-hyrolase-like; |
133-197 | 1.22e-10 | ||||
HAD-hyrolase-like; Pssm-ID: 433056 [Multi-domain] Cd Length: 75 Bit Score: 55.31 E-value: 1.22e-10
|
||||||||
HAD_PGPase | cd04303 | phosphoglycolate phosphatase, similar to Synechococcus elongates phosphoglycolate phosphatase ... |
5-200 | 4.75e-10 | ||||
phosphoglycolate phosphatase, similar to Synechococcus elongates phosphoglycolate phosphatase PGP/CbbZ; Phosphoglycolate phosphatase catalyzes the dephosphorylation of phosphoglycolate; its activity requires divalent cations, especially Mg++. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319799 [Multi-domain] Cd Length: 201 Bit Score: 56.60 E-value: 4.75e-10
|
||||||||
HAD_Neu5Ac-Pase_like | cd04305 | human N-acetylneuraminate-9-phosphate phosphatase, Escherichia coli house-cleaning phosphatase ... |
80-177 | 4.88e-10 | ||||
human N-acetylneuraminate-9-phosphate phosphatase, Escherichia coli house-cleaning phosphatase YjjG, and related phosphatases; N-acetylneuraminate-9- phosphatase (Neu5Ac-9-Pase; E.C. 3.1.3.29) catalyzes the dephosphorylation of N-acylneuraminate 9-phosphate during the synthesis of N-acetylneuraminate; Escherichia coli nucleotide phosphatase YjjG has a broad pyrimidine nucleotide activity spectrum and functions as an in vivo house-cleaning phosphatase for noncanonical pyrimidine nucleotides. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319800 [Multi-domain] Cd Length: 109 Bit Score: 54.86 E-value: 4.88e-10
|
||||||||
NagD | COG0647 | Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]; |
117-199 | 1.76e-09 | ||||
Ribonucleotide monophosphatase NagD, HAD superfamily [Nucleotide transport and metabolism]; Pssm-ID: 440412 [Multi-domain] Cd Length: 259 Bit Score: 55.89 E-value: 1.76e-09
|
||||||||
HAD-SF-IA-v3 | TIGR01509 | haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED; ... |
5-177 | 2.07e-09 | ||||
haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED; This model represents part of one structural subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Subfamily I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Subfamily II consists of sequences in which the capping domain is found between the second and third motifs. Subfamily III sequences have no capping domain in either of these positions. The Subfamily IA and IB capping domains are predicted by PSI-PRED to consist of an alpha helical bundle. Subfamily I encompasses such a wide region of sequence space (the sequences are highly divergent) that representing it with a single model is impossible, resulting in an overly broad description which allows in many unrelated sequences. Subfamily IA and IB are separated based on an aparrent phylogenetic bifurcation. Subfamily IA is still too broad to model, but cannot be further subdivided into large chunks based on phylogenetic trees. Of the three motifs defining the HAD superfamily, the third has three variant forms: (1) hhhhsDxxx(x)D, (2) hhhhssxxx(x)D and (3) hhhhDDxxx(x)s where _s_ refers to a small amino acid and _h_ to a hydrophobic one. All three of these variants are found in subfamily IA. Individual models were made based on seeds exhibiting only one of the variants each. Variant 3 (this model) is found in the enzymes beta-phosphoglucomutase (TIGR01990) and deoxyglucose-6-phosphatase, while many other enzymes of subfamily IA exhibit this variant as well as variant 1 (TIGR01549). These three variant models were created with the knowledge that there will be overlap among them - this is by design and serves the purpose of eliminating the overlap with models of more distantly related HAD subfamilies caused by an overly broad single model. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273662 [Multi-domain] Cd Length: 178 Bit Score: 54.73 E-value: 2.07e-09
|
||||||||
HisB1/GmhB | COG0241 | Histidinol phosphatase/D-glycero-mannoheptose bisphosphatephosphatase, HAD superfamily [Amino ... |
133-198 | 2.80e-09 | ||||
Histidinol phosphatase/D-glycero-mannoheptose bisphosphatephosphatase, HAD superfamily [Amino acid transport and metabolism]; Histidinol phosphatase/D-glycero-mannoheptose bisphosphatephosphatase, HAD superfamily is part of the Pathway/BioSystem: Histidine biosynthesis Pssm-ID: 440011 [Multi-domain] Cd Length: 176 Bit Score: 53.95 E-value: 2.80e-09
|
||||||||
HAD_like | cd07533 | uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar ... |
5-198 | 2.49e-08 | ||||
uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar to Parvibaculum lavamentivorans HAD-superfamily hydrolase, subfamily IA, variant 1; This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319835 [Multi-domain] Cd Length: 207 Bit Score: 52.02 E-value: 2.49e-08
|
||||||||
HAD_Pase_UmpH-like | cd07530 | UmpH/NagD family phosphatase, similar to Escherichia coli UmpH UMP phosphatase/NagD nucleotide ... |
117-197 | 3.21e-08 | ||||
UmpH/NagD family phosphatase, similar to Escherichia coli UmpH UMP phosphatase/NagD nucleotide phosphatase and Mycobacterium tuberculosis Rv1692 glycerol 3-phosphate phosphatase; Escherichia coli UmpH/NagD is a ribonucleoside tri-, di-, and monophosphatase with a preference for purines, it shows peak activity with UMP and functions in UMP-degradation. It is also an effective phosphatase with AMP, GMP and CMP. Mycobacterium tuberculosis phosphatase, Rv1692 is a glycerol 3-phosphate phosphatase. Rv1692 is the final enzyme involved in glycerophospholipid recycling/catabolism. This subfamily belongs to the UmpH/NagD phosphatase family, and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319832 [Multi-domain] Cd Length: 247 Bit Score: 52.21 E-value: 3.21e-08
|
||||||||
HAD_HisB-N | cd07503 | histidinol phosphate phosphatase and related phosphatases; This family includes the N-terminal ... |
133-177 | 4.44e-08 | ||||
histidinol phosphate phosphatase and related phosphatases; This family includes the N-terminal domain of the Escherichia coli bifunctional enzyme histidinol-phosphate phosphatase/imidazole-glycerol-phosphate dehydratase, HisB. The N-terminal histidinol-phosphate phosphatase domain catalyzes the dephosphorylation of histidinol phosphate, the eight step of L-histidine biosynthesis. This family also includes Escherichia coli GmhB phosphatase which is highly specific for D-glycero-D-manno-heptose-1,7-bisphosphate, it removes the C(7)phosphate and not the C(1)phosphate, and this is the third essential step of lipopolysaccharide heptose biosynthesis. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319806 [Multi-domain] Cd Length: 142 Bit Score: 50.22 E-value: 4.44e-08
|
||||||||
PRK13288 | PRK13288 | pyrophosphatase PpaX; Provisional |
5-175 | 3.97e-07 | ||||
pyrophosphatase PpaX; Provisional Pssm-ID: 237336 [Multi-domain] Cd Length: 214 Bit Score: 48.49 E-value: 3.97e-07
|
||||||||
PRK13225 | PRK13225 | phosphoglycolate phosphatase; Provisional |
1-173 | 4.00e-06 | ||||
phosphoglycolate phosphatase; Provisional Pssm-ID: 106187 [Multi-domain] Cd Length: 273 Bit Score: 46.24 E-value: 4.00e-06
|
||||||||
PLN02645 | PLN02645 | phosphoglycolate phosphatase |
124-176 | 1.18e-05 | ||||
phosphoglycolate phosphatase Pssm-ID: 178251 Cd Length: 311 Bit Score: 44.70 E-value: 1.18e-05
|
||||||||
PRK13223 | PRK13223 | phosphoglycolate phosphatase; Provisional |
5-199 | 2.60e-05 | ||||
phosphoglycolate phosphatase; Provisional Pssm-ID: 171912 [Multi-domain] Cd Length: 272 Bit Score: 43.70 E-value: 2.60e-05
|
||||||||
HAD_L2-DEX | cd02588 | L-2-haloacid dehalogenase; L-2-Haloacid dehalogenase catalyzes the hydrolytic dehalogenation ... |
78-198 | 2.61e-05 | ||||
L-2-haloacid dehalogenase; L-2-Haloacid dehalogenase catalyzes the hydrolytic dehalogenation of L-2-haloacids to produce the corresponding D-2-hydroxyacids with an inversion of the C2-configuration. 2-haloacid dehalogenases are of interest for their potential to degrade recalcitrant halogenated environmental pollutants and their use in the synthesis of industrial chemicals. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319787 [Multi-domain] Cd Length: 216 Bit Score: 43.41 E-value: 2.61e-05
|
||||||||
HAD_Pase_UmpH-like | cd16422 | uncharacterized subfamily of the UmpH/NagD phosphatase family, belongs to the haloacid ... |
134-176 | 1.45e-04 | ||||
uncharacterized subfamily of the UmpH/NagD phosphatase family, belongs to the haloacid dehalogenase-like superfamily; This uncharacterized subfamily belongs to the UmpH/NagD phosphatase family and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319858 [Multi-domain] Cd Length: 247 Bit Score: 41.27 E-value: 1.45e-04
|
||||||||
PRK09449 | PRK09449 | dUMP phosphatase; Provisional |
75-201 | 3.91e-04 | ||||
dUMP phosphatase; Provisional Pssm-ID: 181865 [Multi-domain] Cd Length: 224 Bit Score: 39.88 E-value: 3.91e-04
|
||||||||
YqeG | COG2179 | Predicted phosphohydrolase YqeG, HAD superfamily [General function prediction only]; |
133-176 | 4.16e-04 | ||||
Predicted phosphohydrolase YqeG, HAD superfamily [General function prediction only]; Pssm-ID: 441782 Cd Length: 164 Bit Score: 39.34 E-value: 4.16e-04
|
||||||||
PRK08942 | PRK08942 | D-glycero-beta-D-manno-heptose 1,7-bisphosphate 7-phosphatase; |
133-176 | 5.18e-04 | ||||
D-glycero-beta-D-manno-heptose 1,7-bisphosphate 7-phosphatase; Pssm-ID: 236354 [Multi-domain] Cd Length: 181 Bit Score: 39.42 E-value: 5.18e-04
|
||||||||
Histidinol-ppas | TIGR01656 | histidinol-phosphate phosphatase family domain; This domain is found in authentic ... |
133-173 | 6.11e-04 | ||||
histidinol-phosphate phosphatase family domain; This domain is found in authentic histidinol-phosphate phosphatases which are sometimes found as stand-alone entities and sometimes as fusions with imidazoleglycerol-phosphate dehydratase (TIGR01261). Additionally, a family of proteins including YaeD from E. coli (TIGR00213) and various other proteins are closely related but may not have the same substrate specificity. This domain is a member of the haloacid-dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. This superfamily is distinguished by the presence of three motifs: an N-terminal motif containing the nucleophilic aspartate, a central motif containing an conserved serine or threonine, and a C-terminal motif containing a conserved lysine (or arginine) and conserved aspartates. More specifically, the domian modelled here is a member of subfamily III of the HAD-superfamily by virtue of lacking a "capping" domain in either of the two common positions, between motifs 1 and 2, or between motifs 2 and 3. Pssm-ID: 273737 Cd Length: 147 Bit Score: 38.53 E-value: 6.11e-04
|
||||||||
PRK06769 | PRK06769 | HAD-IIIA family hydrolase; |
80-197 | 9.77e-04 | ||||
HAD-IIIA family hydrolase; Pssm-ID: 180686 [Multi-domain] Cd Length: 173 Bit Score: 38.56 E-value: 9.77e-04
|
||||||||
HAD_BsYqeG-like | cd16416 | Uncharacterized family of the the haloacid dehalogenase-like superfamily, similar to the ... |
133-176 | 1.04e-03 | ||||
Uncharacterized family of the the haloacid dehalogenase-like superfamily, similar to the uncharacterized protein Bacillus subtilis YqeG; The haloacid dehalogenase-like (HAD) hydrolases are a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. Members are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319853 [Multi-domain] Cd Length: 108 Bit Score: 37.25 E-value: 1.04e-03
|
||||||||
HAD-SF-IIA | TIGR01460 | Haloacid Dehalogenase Superfamily Class (subfamily) IIA; This model represents one structural ... |
117-176 | 1.40e-03 | ||||
Haloacid Dehalogenase Superfamily Class (subfamily) IIA; This model represents one structural subclass of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The classes are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Class I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Class II consists of sequences in which the capping domain is found between the second and third motifs. Class III sequences have no capping domain in iether of these positions. The Class IIA capping domain is predicted by PSI-PRED to consist of a mixed alpha-beta fold with the basic pattern: Helix-Helix-Helix-Sheet-Helix-Loop-Sheet-Helix-Sheet-Helix. Presently, this subfamily encompasses a single equivalog model (TIGR01452) for the eukaryotic phosphoglycolate phosphatase, as well as four hypothetical equivalogs covering closely related sequences (TIGR01456 and TIGR01458 in eukaryotes, TIGR01457 in gram positive bacteria and TIGR01459 in gram negative bacteria). The Escherishia coli NagD gene and the Bacillus subtilus AraL gene are members of this subfamily but are not members of the any of the presently defined equivalogs within it. NagD is part of the NAG operon responsible for N-acetylglucosamine metabolism. The function of this gene is unknown. Genes from several organisms have been annotated as NagD, or NagD-like. However, without data on the presence of other members of this pathway, (such as in the case of Yersinia pestis) these assignments should not be given great weight. The AraL gene is similar: it is part of the L-arabinose operon, but the function is unknown. A gene from Halobacterium has been annotated as AraL, but no other Ara operon genes have been annotated. Many of the genes in this subfamily have been annotated as "pNPPase" "4-nitrophenyl phosphatase" or "NPPase". These all refer to the same activity versus a common lab test compound used to determine phosphatase activity. There is no evidence that this activity is physiologically relevant. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273637 [Multi-domain] Cd Length: 236 Bit Score: 38.46 E-value: 1.40e-03
|
||||||||
HAD_PNPase_UmpH-like | cd07532 | UmpH/NagD family phosphatase para nitrophenyl phosphate phosphatase, similar to Plasmodium ... |
134-176 | 2.53e-03 | ||||
UmpH/NagD family phosphatase para nitrophenyl phosphate phosphatase, similar to Plasmodium falciparum PNPase; Plasmodium falciparum para nitrophenyl phosphate phosphatase (PNPase) catalyzes the dephosphorylation of thiamine monophosphate to thiamine, other substrates on which its active are nucleotides, phosphorylated sugars, pyridoxal-5-phosphate, and paranitrophenyl phosphate. This subfamily belongs to the UmpH/NagD phosphatase family, and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319834 [Multi-domain] Cd Length: 286 Bit Score: 37.67 E-value: 2.53e-03
|
||||||||
HAD_Pase_UmpH-like | cd07510 | UmpH/NagD family phosphatase, similar to human PGP phosphoglycolate phosphatase and ... |
134-176 | 2.67e-03 | ||||
UmpH/NagD family phosphatase, similar to human PGP phosphoglycolate phosphatase and Schizosaccharomyces pombe PHO2 p-nitrophenylphosphatase; This subfamily includes the phosphoglycolate phosphatases (human PGP and Arabidopsis thaliana PGLP2) and p-nitrophenylphosphatases (Schizosaccharomyces pombe PHO2 and Saccharomyces PHO13p). It belongs to the UmpH/NagD phosphatase family, and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319813 [Multi-domain] Cd Length: 282 Bit Score: 37.75 E-value: 2.67e-03
|
||||||||
HAD_type_II | TIGR01428 | 2-haloalkanoic acid dehalogenase, type II; Catalyzes the hydrolytic dehalogenation of small ... |
78-175 | 3.00e-03 | ||||
2-haloalkanoic acid dehalogenase, type II; Catalyzes the hydrolytic dehalogenation of small L-2-haloalkanoic acids to yield the corresponding D-2-hydroxyalkanoic acids. Belongs to the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases (pfam00702), class (subfamily) I. Note that the Type I HAD enzymes have not yet been fully characterized, but clearly utilize a substantially different catalytic mechanism and are thus unlikely to be related. Pssm-ID: 130495 [Multi-domain] Cd Length: 198 Bit Score: 37.32 E-value: 3.00e-03
|
||||||||
HAD_PGPase | cd16421 | Rhodobacter capsulatus Cbbz phosphoglycolate phosphatase and related proteins; ; belongs to ... |
99-175 | 7.60e-03 | ||||
Rhodobacter capsulatus Cbbz phosphoglycolate phosphatase and related proteins; ; belongs to the haloacid dehalogenase-like superfamily; Phosphoglycolate phosphatase (PGPase; EC 3.1.3.18) catalyzes the conversion of 2-phosphoglycolate into glycolate and phosphate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319857 [Multi-domain] Cd Length: 105 Bit Score: 34.74 E-value: 7.60e-03
|
||||||||
Blast search parameters | ||||
|