MULTISPECIES: ferrous iron transport protein B [Enterococcus]
ferrous iron transporter B( domain architecture ID 11417566)
ferrous iron transporter B is part of an Fe(2+) uptake system that is probably driven by GTP hydrolysis
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||||||
FeoB | COG0370 | Fe2+ transporter FeoB [Inorganic ion transport and metabolism]; |
1-673 | 0e+00 | ||||||||||
Fe2+ transporter FeoB [Inorganic ion transport and metabolism]; : Pssm-ID: 440139 [Multi-domain] Cd Length: 662 Bit Score: 936.85 E-value: 0e+00
|
||||||||||||||
Name | Accession | Description | Interval | E-value | |||||||||||
FeoB | COG0370 | Fe2+ transporter FeoB [Inorganic ion transport and metabolism]; |
1-673 | 0e+00 | |||||||||||
Fe2+ transporter FeoB [Inorganic ion transport and metabolism]; Pssm-ID: 440139 [Multi-domain] Cd Length: 662 Bit Score: 936.85 E-value: 0e+00
|
|||||||||||||||
feoB | TIGR00437 | ferrous iron transporter FeoB; FeoB (773 amino acids in E. coli), a cytoplasmic membrane ... |
9-640 | 0e+00 | |||||||||||
ferrous iron transporter FeoB; FeoB (773 amino acids in E. coli), a cytoplasmic membrane protein required for iron(II) update, is encoded in an operon with FeoA (75 amino acids), which is also required, and is regulated by Fur. There appear to be two copies in Archaeoglobus fulgidus and Clostridium acetobutylicum. [Transport and binding proteins, Cations and iron carrying compounds] Pssm-ID: 273077 [Multi-domain] Cd Length: 591 Bit Score: 529.70 E-value: 0e+00
|
|||||||||||||||
feoB | PRK09554 | Fe(2+) transporter permease subunit FeoB; |
5-668 | 5.80e-169 | |||||||||||
Fe(2+) transporter permease subunit FeoB; Pssm-ID: 236563 [Multi-domain] Cd Length: 772 Bit Score: 504.25 E-value: 5.80e-169
|
|||||||||||||||
FeoB_N | pfam02421 | Ferrous iron transport protein B; Escherichia coli has an iron(II) transport system (feo) ... |
5-156 | 7.88e-90 | |||||||||||
Ferrous iron transport protein B; Escherichia coli has an iron(II) transport system (feo) which may make an important contribution to the iron supply of the cell under anaerobic conditions. FeoB has been identified as part of this transport system. FeoB is a large 700-800 amino acid integral membrane protein. The N terminus contains a P-loop motif suggesting that iron transport may be ATP dependent. Pssm-ID: 460552 [Multi-domain] Cd Length: 156 Bit Score: 277.41 E-value: 7.88e-90
|
|||||||||||||||
FeoB | cd01879 | Ferrous iron transport protein B (FeoB) family; Ferrous iron transport protein B (FeoB) ... |
6-163 | 4.43e-87 | |||||||||||
Ferrous iron transport protein B (FeoB) family; Ferrous iron transport protein B (FeoB) subfamily. E. coli has an iron(II) transport system, known as feo, which may make an important contribution to the iron supply of the cell under anaerobic conditions. FeoB has been identified as part of this transport system. FeoB is a large 700-800 amino acid integral membrane protein. The N terminus contains a P-loop motif suggesting that iron transport may be ATP dependent. Pssm-ID: 206667 [Multi-domain] Cd Length: 159 Bit Score: 270.48 E-value: 4.43e-87
|
|||||||||||||||
Name | Accession | Description | Interval | E-value | |||||||||||
FeoB | COG0370 | Fe2+ transporter FeoB [Inorganic ion transport and metabolism]; |
1-673 | 0e+00 | |||||||||||
Fe2+ transporter FeoB [Inorganic ion transport and metabolism]; Pssm-ID: 440139 [Multi-domain] Cd Length: 662 Bit Score: 936.85 E-value: 0e+00
|
|||||||||||||||
feoB | TIGR00437 | ferrous iron transporter FeoB; FeoB (773 amino acids in E. coli), a cytoplasmic membrane ... |
9-640 | 0e+00 | |||||||||||
ferrous iron transporter FeoB; FeoB (773 amino acids in E. coli), a cytoplasmic membrane protein required for iron(II) update, is encoded in an operon with FeoA (75 amino acids), which is also required, and is regulated by Fur. There appear to be two copies in Archaeoglobus fulgidus and Clostridium acetobutylicum. [Transport and binding proteins, Cations and iron carrying compounds] Pssm-ID: 273077 [Multi-domain] Cd Length: 591 Bit Score: 529.70 E-value: 0e+00
|
|||||||||||||||
feoB | PRK09554 | Fe(2+) transporter permease subunit FeoB; |
5-668 | 5.80e-169 | |||||||||||
Fe(2+) transporter permease subunit FeoB; Pssm-ID: 236563 [Multi-domain] Cd Length: 772 Bit Score: 504.25 E-value: 5.80e-169
|
|||||||||||||||
FeoB_N | pfam02421 | Ferrous iron transport protein B; Escherichia coli has an iron(II) transport system (feo) ... |
5-156 | 7.88e-90 | |||||||||||
Ferrous iron transport protein B; Escherichia coli has an iron(II) transport system (feo) which may make an important contribution to the iron supply of the cell under anaerobic conditions. FeoB has been identified as part of this transport system. FeoB is a large 700-800 amino acid integral membrane protein. The N terminus contains a P-loop motif suggesting that iron transport may be ATP dependent. Pssm-ID: 460552 [Multi-domain] Cd Length: 156 Bit Score: 277.41 E-value: 7.88e-90
|
|||||||||||||||
FeoB | cd01879 | Ferrous iron transport protein B (FeoB) family; Ferrous iron transport protein B (FeoB) ... |
6-163 | 4.43e-87 | |||||||||||
Ferrous iron transport protein B (FeoB) family; Ferrous iron transport protein B (FeoB) subfamily. E. coli has an iron(II) transport system, known as feo, which may make an important contribution to the iron supply of the cell under anaerobic conditions. FeoB has been identified as part of this transport system. FeoB is a large 700-800 amino acid integral membrane protein. The N terminus contains a P-loop motif suggesting that iron transport may be ATP dependent. Pssm-ID: 206667 [Multi-domain] Cd Length: 159 Bit Score: 270.48 E-value: 4.43e-87
|
|||||||||||||||
Era_like | cd00880 | E. coli Ras-like protein (Era)-like GTPase; The Era (E. coli Ras-like protein)-like family ... |
6-156 | 2.44e-21 | |||||||||||
E. coli Ras-like protein (Era)-like GTPase; The Era (E. coli Ras-like protein)-like family includes several distinct subfamilies (TrmE/ThdF, FeoB, YihA (EngB), Era, and EngA/YfgK) that generally show sequence conservation in the region between the Walker A and B motifs (G1 and G3 box motifs), to the exclusion of other GTPases. TrmE is ubiquitous in bacteria and is a widespread mitochondrial protein in eukaryotes, but is absent from archaea. The yeast member of TrmE family, MSS1, is involved in mitochondrial translation; bacterial members are often present in translation-related operons. FeoB represents an unusual adaptation of GTPases for high-affinity iron (II) transport. YihA (EngB) family of GTPases is typified by the E. coli YihA, which is an essential protein involved in cell division control. Era is characterized by a distinct derivative of the KH domain (the pseudo-KH domain) which is located C-terminal to the GTPase domain. EngA and its orthologs are composed of two GTPase domains and, since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Pssm-ID: 206646 [Multi-domain] Cd Length: 161 Bit Score: 91.15 E-value: 2.44e-21
|
|||||||||||||||
MMR_HSR1 | pfam01926 | 50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete ... |
4-115 | 1.08e-19 | |||||||||||
50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete activity of the protein of interacting with the 50S ribosome and binding of both adenine and guanine nucleotides, with a preference for guanine nucleotide. Pssm-ID: 460387 [Multi-domain] Cd Length: 113 Bit Score: 84.98 E-value: 1.08e-19
|
|||||||||||||||
FeoB_Cyto | pfam17910 | FeoB cytosolic helical domain; FeoB is a G-protein coupled membrane protein essential for Fe ... |
173-259 | 1.36e-19 | |||||||||||
FeoB cytosolic helical domain; FeoB is a G-protein coupled membrane protein essential for Fe(II) uptake in prokaryotes. In the structures, a canonical G-protein domain (G domain) is followed by a helical bundle domain (S-domain) which is represented by this entry. Pssm-ID: 465561 [Multi-domain] Cd Length: 90 Bit Score: 83.83 E-value: 1.36e-19
|
|||||||||||||||
Ras_like_GTPase | cd00882 | Rat sarcoma (Ras)-like superfamily of small guanosine triphosphatases (GTPases); Ras-like ... |
6-156 | 1.48e-17 | |||||||||||
Rat sarcoma (Ras)-like superfamily of small guanosine triphosphatases (GTPases); Ras-like GTPase superfamily. The Ras-like superfamily of small GTPases consists of several families with an extremely high degree of structural and functional similarity. The Ras superfamily is divided into at least four families in eukaryotes: the Ras, Rho, Rab, and Sar1/Arf families. This superfamily also includes proteins like the GTP translation factors, Era-like GTPases, and G-alpha chain of the heterotrimeric G proteins. Members of the Ras superfamily regulate a wide variety of cellular functions: the Ras family regulates gene expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates nucleocytoplasmic transport and microtubule organization. The GTP translation factor family regulates initiation, elongation, termination, and release in translation, and the Era-like GTPase family regulates cell division, sporulation, and DNA replication. Members of the Ras superfamily are identified by the GTP binding site, which is made up of five characteristic sequence motifs, and the switch I and switch II regions. Pssm-ID: 206648 [Multi-domain] Cd Length: 161 Bit Score: 80.58 E-value: 1.48e-17
|
|||||||||||||||
FeoB_C | pfam07664 | Ferrous iron transport protein B C terminus; Escherichia coli has an iron(II) transport system ... |
457-506 | 5.27e-15 | |||||||||||
Ferrous iron transport protein B C terminus; Escherichia coli has an iron(II) transport system (feo) which may make an important contribution to the iron supply of the cell under anaerobic conditions. FeoB has been identified as part of this transport system. FeoB is a large 700-800 amino acid integral membrane protein. The N-terminus has been previously erroneously described as being ATP-binding. Recent work shows that it is similar to eukaryotic G-proteins and that it is a GTPase. Pssm-ID: 462224 [Multi-domain] Cd Length: 51 Bit Score: 69.36 E-value: 5.27e-15
|
|||||||||||||||
Gate | pfam07670 | Nucleoside recognition; This region in the nucleoside transporter proteins are responsible for ... |
352-445 | 6.65e-15 | |||||||||||
Nucleoside recognition; This region in the nucleoside transporter proteins are responsible for determining nucleoside specificity in the human CNT1 and CNT2 proteins. In the FeoB proteins, which are believed to be Fe2+ transporters, it includes the membrane pore region, so the function of this region is likely to be more general than just nucleoside specificity. This family may represent the pore and gate, with a wide potential range of specificity. Hence its name 'Gate'. Pssm-ID: 429586 [Multi-domain] Cd Length: 101 Bit Score: 70.75 E-value: 6.65e-15
|
|||||||||||||||
Gate | pfam07670 | Nucleoside recognition; This region in the nucleoside transporter proteins are responsible for ... |
514-641 | 1.12e-10 | |||||||||||
Nucleoside recognition; This region in the nucleoside transporter proteins are responsible for determining nucleoside specificity in the human CNT1 and CNT2 proteins. In the FeoB proteins, which are believed to be Fe2+ transporters, it includes the membrane pore region, so the function of this region is likely to be more general than just nucleoside specificity. This family may represent the pore and gate, with a wide potential range of specificity. Hence its name 'Gate'. Pssm-ID: 429586 [Multi-domain] Cd Length: 101 Bit Score: 58.80 E-value: 1.12e-10
|
|||||||||||||||
EngA1 | cd01894 | EngA1 GTPase contains the first domain of EngA; This EngA1 subfamily CD represents the first ... |
6-151 | 3.88e-09 | |||||||||||
EngA1 GTPase contains the first domain of EngA; This EngA1 subfamily CD represents the first GTPase domain of EngA and its orthologs, which are composed of two adjacent GTPase domains. Since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Although the exact function of these proteins has not been elucidated, studies have revealed that the E. coli EngA homolog, Der, and Neisseria gonorrhoeae EngA are essential for cell viability. A recent report suggests that E. coli Der functions in ribosome assembly and stability. Pssm-ID: 206681 [Multi-domain] Cd Length: 157 Bit Score: 55.90 E-value: 3.88e-09
|
|||||||||||||||
Obg_like | cd01881 | Obg-like family of GTPases consist of five subfamilies: Obg, DRG, YyaF/YchF, Ygr210, and NOG1; ... |
6-154 | 4.56e-09 | |||||||||||
Obg-like family of GTPases consist of five subfamilies: Obg, DRG, YyaF/YchF, Ygr210, and NOG1; The Obg-like subfamily consists of five well-delimited, ancient subfamilies, namely Obg, DRG, YyaF/YchF, Ygr210, and NOG1. Four of these groups (Obg, DRG, YyaF/YchF, and Ygr210) are characterized by a distinct glycine-rich motif immediately following the Walker B motif (G3 box). Obg/CgtA is an essential gene that is involved in the initiation of sporulation and DNA replication in the bacteria Caulobacter and Bacillus, but its exact molecular role is unknown. Furthermore, several OBG family members possess a C-terminal RNA-binding domain, the TGS domain, which is also present in threonyl-tRNA synthetase and in bacterial guanosine polyphosphatase SpoT. Nog1 is a nucleolar protein that might function in ribosome assembly. The DRG and Nog1 subfamilies are ubiquitous in archaea and eukaryotes, the Ygr210 subfamily is present in archaea and fungi, and the Obg and YyaF/YchF subfamilies are ubiquitous in bacteria and eukaryotes. The Obg/Nog1 and DRG subfamilies appear to form one major branch of the Obg family and the Ygr210 and YchF subfamilies form another branch. No GEFs, GAPs, or GDIs for Obg have been identified. Pssm-ID: 206668 [Multi-domain] Cd Length: 167 Bit Score: 56.25 E-value: 4.56e-09
|
|||||||||||||||
EngA2 | cd01895 | EngA2 GTPase contains the second domain of EngA; This EngA2 subfamily CD represents the second ... |
4-159 | 8.57e-09 | |||||||||||
EngA2 GTPase contains the second domain of EngA; This EngA2 subfamily CD represents the second GTPase domain of EngA and its orthologs, which are composed of two adjacent GTPase domains. Since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Although the exact function of these proteins has not been elucidated, studies have revealed that the E. coli EngA homolog, Der, and Neisseria gonorrhoeae EngA are essential for cell viability. A recent report suggests that E. coli Der functions in ribosome assembly and stability. Pssm-ID: 206682 [Multi-domain] Cd Length: 174 Bit Score: 55.52 E-value: 8.57e-09
|
|||||||||||||||
HflX | cd01878 | HflX GTPase family; HflX subfamily. A distinct conserved domain with a glycine-rich segment ... |
4-156 | 3.95e-08 | |||||||||||
HflX GTPase family; HflX subfamily. A distinct conserved domain with a glycine-rich segment N-terminal of the GTPase domain characterizes the HflX subfamily. The E. coli HflX has been implicated in the control of the lambda cII repressor proteolysis, but the actual biological functions of these GTPases remain unclear. HflX is widespread, but not universally represented in all three superkingdoms. Pssm-ID: 206666 [Multi-domain] Cd Length: 204 Bit Score: 54.00 E-value: 3.95e-08
|
|||||||||||||||
small_GTP | TIGR00231 | small GTP-binding protein domain; Proteins with a small GTP-binding domain recognized by this ... |
5-155 | 2.46e-07 | |||||||||||
small GTP-binding protein domain; Proteins with a small GTP-binding domain recognized by this model include Ras, RhoA, Rab11, translation elongation factor G, translation initiation factor IF-2, tetratcycline resistance protein TetM, CDC42, Era, ADP-ribosylation factors, tdhF, and many others. In some proteins the domain occurs more than once.This model recognizes a large number of small GTP-binding proteins and related domains in larger proteins. Note that the alpha chains of heterotrimeric G proteins are larger proteins in which the NKXD motif is separated from the GxxxxGK[ST] motif (P-loop) by a long insert and are not easily detected by this model. [Unknown function, General] Pssm-ID: 272973 [Multi-domain] Cd Length: 162 Bit Score: 50.83 E-value: 2.46e-07
|
|||||||||||||||
Der | COG1160 | Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; |
1-151 | 2.97e-05 | |||||||||||
Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440774 [Multi-domain] Cd Length: 438 Bit Score: 46.94 E-value: 2.97e-05
|
|||||||||||||||
Der | COG1160 | Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; |
4-155 | 3.82e-05 | |||||||||||
Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440774 [Multi-domain] Cd Length: 438 Bit Score: 46.56 E-value: 3.82e-05
|
|||||||||||||||
NOG | cd01897 | Nucleolar GTP-binding protein (NOG); NOG1 is a nucleolar GTP-binding protein present in ... |
5-161 | 3.90e-05 | |||||||||||
Nucleolar GTP-binding protein (NOG); NOG1 is a nucleolar GTP-binding protein present in eukaryotes ranging from trypanosomes to humans. NOG1 is functionally linked to ribosome biogenesis and found in association with the nuclear pore complexes and identified in many preribosomal complexes. Thus, defects in NOG1 can lead to defects in 60S biogenesis. The S. cerevisiae NOG1 gene is essential for cell viability, and mutations in the predicted G motifs abrogate function. It is a member of the ODN family of GTP-binding proteins that also includes the bacterial Obg and DRG proteins. Pssm-ID: 206684 [Multi-domain] Cd Length: 167 Bit Score: 44.47 E-value: 3.90e-05
|
|||||||||||||||
PRK00093 | PRK00093 | GTP-binding protein Der; Reviewed |
4-159 | 1.17e-04 | |||||||||||
GTP-binding protein Der; Reviewed Pssm-ID: 234628 [Multi-domain] Cd Length: 435 Bit Score: 45.04 E-value: 1.17e-04
|
|||||||||||||||
YihA_EngB | cd01876 | YihA (EngB) GTPase family; The YihA (EngB) subfamily of GTPases is typified by the E. coli ... |
4-155 | 1.19e-04 | |||||||||||
YihA (EngB) GTPase family; The YihA (EngB) subfamily of GTPases is typified by the E. coli YihA, an essential protein involved in cell division control. YihA and its orthologs are small proteins that typically contain less than 200 amino acid residues and consists of the GTPase domain only (some of the eukaryotic homologs contain an N-terminal extension of about 120 residues that might be involved in organellar targeting). Homologs of yihA are found in most Gram-positive and Gram-negative pathogenic bacteria, with the exception of Mycobacterium tuberculosis. The broad-spectrum nature of YihA and its essentiality for cell viability in bacteria make it an attractive antibacterial target. Pssm-ID: 206665 [Multi-domain] Cd Length: 170 Bit Score: 43.27 E-value: 1.19e-04
|
|||||||||||||||
PRK09602 | PRK09602 | translation-associated GTPase; Reviewed |
4-44 | 1.19e-04 | |||||||||||
translation-associated GTPase; Reviewed Pssm-ID: 236584 [Multi-domain] Cd Length: 396 Bit Score: 45.18 E-value: 1.19e-04
|
|||||||||||||||
PRK00093 | PRK00093 | GTP-binding protein Der; Reviewed |
5-151 | 1.84e-04 | |||||||||||
GTP-binding protein Der; Reviewed Pssm-ID: 234628 [Multi-domain] Cd Length: 435 Bit Score: 44.66 E-value: 1.84e-04
|
|||||||||||||||
PRK04213 | PRK04213 | GTP-binding protein EngB; |
4-156 | 5.05e-04 | |||||||||||
GTP-binding protein EngB; Pssm-ID: 179790 [Multi-domain] Cd Length: 201 Bit Score: 41.83 E-value: 5.05e-04
|
|||||||||||||||
DRG | cd01896 | Developmentally Regulated GTP-binding protein (DRG); The developmentally regulated GTP-binding ... |
4-59 | 6.68e-04 | |||||||||||
Developmentally Regulated GTP-binding protein (DRG); The developmentally regulated GTP-binding protein (DRG) subfamily is an uncharacterized member of the Obg family, an evolutionary branch of GTPase superfamily proteins. GTPases act as molecular switches regulating diverse cellular processes. DRG2 and DRG1 comprise the DRG subfamily in eukaryotes. In view of their widespread expression in various tissues and high conservation among distantly related species in eukaryotes and archaea, DRG proteins may regulate fundamental cellular processes. It is proposed that the DRG subfamily proteins play their physiological roles through RNA binding. Pssm-ID: 206683 [Multi-domain] Cd Length: 233 Bit Score: 41.76 E-value: 6.68e-04
|
|||||||||||||||
Era | cd04163 | E. coli Ras-like protein (Era) is a multifunctional GTPase; Era (E. coli Ras-like protein) is ... |
5-151 | 9.97e-04 | |||||||||||
E. coli Ras-like protein (Era) is a multifunctional GTPase; Era (E. coli Ras-like protein) is a multifunctional GTPase found in all bacteria except some eubacteria. It binds to the 16S ribosomal RNA (rRNA) of the 30S subunit and appears to play a role in the assembly of the 30S subunit, possibly by chaperoning the 16S rRNA. It also contacts several assembly elements of the 30S subunit. Era couples cell growth with cytokinesis and plays a role in cell division and energy metabolism. Homologs have also been found in eukaryotes. Era contains two domains: the N-terminal GTPase domain and a C-terminal domain KH domain that is critical for RNA binding. Both domains are important for Era function. Era is functionally able to compensate for deletion of RbfA, a cold-shock adaptation protein that is required for efficient processing of the 16S rRNA. Pssm-ID: 206726 [Multi-domain] Cd Length: 168 Bit Score: 40.52 E-value: 9.97e-04
|
|||||||||||||||
Blast search parameters | ||||
|