MULTISPECIES: VOC family protein [Klebsiella]
VOC family protein( domain architecture ID 50733)
vicinal oxygen chelate (VOC) family protein uses a metal center to coordinate a substrate, intermediate, or transition state through vicinal oxygen atoms
List of domain hits
Name | Accession | Description | Interval | E-value | |||
VOC super family | cl14632 | vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed ... |
2-126 | 1.07e-50 | |||
vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). Type I extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into aromatic substrates, which results in the cleavage of aromatic rings. They are key enzymes in the degradation of aromatic compounds. Type I extradiol dioxygenases include class I and class II enzymes. Class I and II enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. Glyoxylase I catalyzes the glutathione-dependent inactivation of toxic methylglyoxal, requiring zinc or nickel ions for activity. The antibiotic resistance proteins in this family use a variety of mechanisms to block the function of antibiotics. Bleomycin resistance protein (BLMA) sequesters bleomycin's activity by directly binding to it. Whereas, three types of fosfomycin resistance proteins employ different mechanisms to render fosfomycin inactive by modifying the fosfomycin molecule. Although the proteins in this superfamily are functionally distinct, their structures are similar. The difference among the three dimensional structures of the three types of proteins in this superfamily is interesting from an evolutionary perspective. Both glyoxalase I and BLMA show domain swapping between subunits. However, there is no domain swapping for type 1 extradiol dioxygenases. The actual alignment was detected with superfamily member cd07241: Pssm-ID: 472697 Cd Length: 125 Bit Score: 156.80 E-value: 1.07e-50
|
|||||||
Name | Accession | Description | Interval | E-value | |||
VOC_BsYyaH | cd07241 | vicinal oxygen chelate (VOC) family protein similar to Bacillus subtilis YyaH; The vicinal ... |
2-126 | 1.07e-50 | |||
vicinal oxygen chelate (VOC) family protein similar to Bacillus subtilis YyaH; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319905 Cd Length: 125 Bit Score: 156.80 E-value: 1.07e-50
|
|||||||
GloA | COG0346 | Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary ... |
1-126 | 1.45e-23 | |||
Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440115 [Multi-domain] Cd Length: 125 Bit Score: 88.13 E-value: 1.45e-23
|
|||||||
Glyoxalase | pfam00903 | Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; |
2-125 | 1.57e-14 | |||
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; Pssm-ID: 395724 [Multi-domain] Cd Length: 121 Bit Score: 64.78 E-value: 1.57e-14
|
|||||||
Name | Accession | Description | Interval | E-value | |||
VOC_BsYyaH | cd07241 | vicinal oxygen chelate (VOC) family protein similar to Bacillus subtilis YyaH; The vicinal ... |
2-126 | 1.07e-50 | |||
vicinal oxygen chelate (VOC) family protein similar to Bacillus subtilis YyaH; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319905 Cd Length: 125 Bit Score: 156.80 E-value: 1.07e-50
|
|||||||
GloA | COG0346 | Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary ... |
1-126 | 1.45e-23 | |||
Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440115 [Multi-domain] Cd Length: 125 Bit Score: 88.13 E-value: 1.45e-23
|
|||||||
VOC | cd06587 | vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed ... |
5-125 | 6.42e-20 | |||
vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). Type I extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into aromatic substrates, which results in the cleavage of aromatic rings. They are key enzymes in the degradation of aromatic compounds. Type I extradiol dioxygenases include class I and class II enzymes. Class I and II enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. Glyoxylase I catalyzes the glutathione-dependent inactivation of toxic methylglyoxal, requiring zinc or nickel ions for activity. The antibiotic resistance proteins in this family use a variety of mechanisms to block the function of antibiotics. Bleomycin resistance protein (BLMA) sequesters bleomycin's activity by directly binding to it. Whereas, three types of fosfomycin resistance proteins employ different mechanisms to render fosfomycin inactive by modifying the fosfomycin molecule. Although the proteins in this superfamily are functionally distinct, their structures are similar. The difference among the three dimensional structures of the three types of proteins in this superfamily is interesting from an evolutionary perspective. Both glyoxalase I and BLMA show domain swapping between subunits. However, there is no domain swapping for type 1 extradiol dioxygenases. Pssm-ID: 319898 [Multi-domain] Cd Length: 112 Bit Score: 78.34 E-value: 6.42e-20
|
|||||||
COG3607 | COG3607 | Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function ... |
21-126 | 1.57e-15 | |||
Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function prediction only]; Pssm-ID: 442825 Cd Length: 126 Bit Score: 67.55 E-value: 1.57e-15
|
|||||||
CatE | COG2514 | Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; |
1-127 | 8.41e-15 | |||
Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 442004 [Multi-domain] Cd Length: 141 Bit Score: 66.13 E-value: 8.41e-15
|
|||||||
Glyoxalase | pfam00903 | Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; |
2-125 | 1.57e-14 | |||
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; Pssm-ID: 395724 [Multi-domain] Cd Length: 121 Bit Score: 64.78 E-value: 1.57e-14
|
|||||||
VOC_BsYqjT | cd07242 | vicinal oxygen chelate (VOC) family protein similar to Bacillus subtilis YqjT; The vicinal ... |
3-127 | 1.06e-09 | |||
vicinal oxygen chelate (VOC) family protein similar to Bacillus subtilis YqjT; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319906 Cd Length: 126 Bit Score: 52.49 E-value: 1.06e-09
|
|||||||
VOC | COG3324 | Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function ... |
1-126 | 2.23e-09 | |||
Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function prediction only]; Pssm-ID: 442553 [Multi-domain] Cd Length: 119 Bit Score: 51.17 E-value: 2.23e-09
|
|||||||
BphC2-C3-RGP6_C_like | cd08348 | The single-domain 2,3-dihydroxybiphenyl 1,2-dioxygenases; This subfamily contains Rhodococcus ... |
2-125 | 2.06e-08 | |||
The single-domain 2,3-dihydroxybiphenyl 1,2-dioxygenases; This subfamily contains Rhodococcus globerulus P6 BphC2-RGP6 and BphC3-RGP6, and similar proteins. BphC catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, yielding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid. This is the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). This subfamily of BphCs belongs to the type I extradiol dioxygenase family, which require a metal in the active site in its catalytic mechanism. Most type I extradiol dioxygenases are activated by Fe(II). Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of BphCs. For example, three types of BphC enzymes have been found in Rhodococcus globerulus (BphC1-RGP6 - BphC3-RGP6), all three enzymes are type I extradiol dioxygenases. BphC2-RGP6 and BphC3-RGP6 are one-domain dioxygenases, which form hexamers. BphC1-RGP6 has an internal duplication, it is a two-domain dioxygenase which forms octamers, its two domains do not belong to this subfamily. Pssm-ID: 319936 Cd Length: 137 Bit Score: 49.06 E-value: 2.06e-08
|
|||||||
BphC5-RrK37_N_like | cd08362 | N-terminal, non-catalytic, domain of BphC5 (2,3-dihydroxybiphenyl 1,2-dioxygenase) from ... |
75-127 | 4.48e-07 | |||
N-terminal, non-catalytic, domain of BphC5 (2,3-dihydroxybiphenyl 1,2-dioxygenase) from Rhodococcus rhodochrous K37, and similar proteins; 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). The enzyme contains a N-terminal and a C-terminal domain of similar structure fold, resulting from an ancient gene duplication. BphC belongs to the type I extradiol dioxygenase family, which requires a metal in the active site for its catalytic activity. Polychlorinated biphenyl degrading bacteria demonstrate multiplicity of BphCs. Bacterium Rhodococcus rhodochrous K37 has eight genes encoding BphC enzymes. This family includes the N-terminal domain of BphC5-RrK37. The crystal structure of the protein from Novosphingobium aromaticivorans has a Mn(II)in the active site, although most proteins of type I extradiol dioxygenases are activated by Fe(II). Pssm-ID: 319950 [Multi-domain] Cd Length: 120 Bit Score: 45.32 E-value: 4.48e-07
|
|||||||
VOC_like | cd07254 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
5-125 | 3.55e-06 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319917 [Multi-domain] Cd Length: 120 Bit Score: 42.83 E-value: 3.55e-06
|
|||||||
VOC_like | cd09012 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
47-126 | 5.00e-06 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319954 Cd Length: 127 Bit Score: 42.75 E-value: 5.00e-06
|
|||||||
PsjN_like | cd16356 | Burkholderia Phytofirmans glyoxalase/bleomycin resistance protein/dioxygenase family enzyme ... |
76-125 | 5.38e-06 | |||
Burkholderia Phytofirmans glyoxalase/bleomycin resistance protein/dioxygenase family enzyme and similar proteins; Burkholderia Phytofirmans glyoxalase/bleomycin resistance protein/dioxygenase family enzyme and similar proteins. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319963 Cd Length: 119 Bit Score: 42.41 E-value: 5.38e-06
|
|||||||
VOC_like | cd07245 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
5-125 | 2.01e-05 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319909 [Multi-domain] Cd Length: 117 Bit Score: 40.76 E-value: 2.01e-05
|
|||||||
VOC_Bs_YwkD_like | cd08352 | vicinal oxygen chelate (VOC) family protein Bacillus subtilis YwkD and similar proteins; ... |
49-125 | 2.25e-05 | |||
vicinal oxygen chelate (VOC) family protein Bacillus subtilis YwkD and similar proteins; uncharacterized subfamily of vicinal oxygen chelate (VOC) family contains Bacillus subtilis YwkD and similar proteins. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319940 [Multi-domain] Cd Length: 123 Bit Score: 40.99 E-value: 2.25e-05
|
|||||||
PhnB | COG2764 | Zn-dependent glyoxalase, PhnB family [Energy production and conversion]; |
74-125 | 9.21e-05 | |||
Zn-dependent glyoxalase, PhnB family [Energy production and conversion]; Pssm-ID: 442048 [Multi-domain] Cd Length: 118 Bit Score: 39.07 E-value: 9.21e-05
|
|||||||
VOC_like | cd07262 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
74-126 | 1.25e-04 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319923 [Multi-domain] Cd Length: 121 Bit Score: 38.75 E-value: 1.25e-04
|
|||||||
VOC_like | cd07264 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
3-125 | 1.85e-04 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319925 [Multi-domain] Cd Length: 118 Bit Score: 38.47 E-value: 1.85e-04
|
|||||||
VOC_like | cd07251 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
61-126 | 2.19e-04 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319914 [Multi-domain] Cd Length: 120 Bit Score: 38.04 E-value: 2.19e-04
|
|||||||
EhpR_like | cd07261 | phenazine resistance protein, EhpR; Phenazine resistance protein (EhpR) in Enterobacter ... |
72-127 | 2.84e-04 | |||
phenazine resistance protein, EhpR; Phenazine resistance protein (EhpR) in Enterobacter agglomerans confers resistance by binding D-alanyl-griseoluteic acid and acting as a chaperone involved in exporting the antibiotic rather than by altering it chemically. EhpR is evolutionarily related to glyoxalase I and type I extradiol dioxygenases. Pssm-ID: 319922 Cd Length: 114 Bit Score: 37.77 E-value: 2.84e-04
|
|||||||
VOC_ShValD_like | cd16361 | vicinal oxygen chelate (VOC) family protein similar to Streptomyces hygroscopicus ValD protein; ... |
2-126 | 3.13e-03 | |||
vicinal oxygen chelate (VOC) family protein similar to Streptomyces hygroscopicus ValD protein; This subfamily of vicinal oxygen chelate (VOC) family protein includes Streptomyces hygroscopicus ValD protein and similar proteins. ValD protein functions in validamycin biosynthetic pathway. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319968 Cd Length: 150 Bit Score: 35.38 E-value: 3.13e-03
|
|||||||
SgaA_N_like | cd07247 | N-terminal domain of Streptomyces griseus SgaA and similar domains; SgaA suppresses the growth ... |
82-127 | 8.49e-03 | |||
N-terminal domain of Streptomyces griseus SgaA and similar domains; SgaA suppresses the growth disturbances caused by high osmolarity and a high concentration of A-factor, a microbial hormone, during the early growth phase in Streptomyces griseus. A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) controls morphological differentiation and secondary metabolism in Streptomyces griseus. It is a chemical signaling molecule that at a very low concentration acts as a switch for yellow pigment production, aerial mycelium formation, streptomycin production, and streptomycin resistance. The structure and amino acid sequence of SgaA are closely related to a group of antibiotics resistance proteins, including bleomycin resistance protein, mitomycin resistance protein, and fosfomycin resistance proteins. SgaA might also function as a streptomycin resistance protein. Pssm-ID: 319911 [Multi-domain] Cd Length: 114 Bit Score: 33.78 E-value: 8.49e-03
|
|||||||
VOC_BsCatE_like_N | cd07255 | N-terminal of Bacillus subtilis CatE like protein; Uncharacterized subfamily of VOC ... |
1-125 | 8.55e-03 | |||
N-terminal of Bacillus subtilis CatE like protein; Uncharacterized subfamily of VOC superfamily contains Bacillus subtilis CatE and similar proteins. CatE is proposed to function as Catechol-2,3-dioxygenase. VOC is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319918 Cd Length: 124 Bit Score: 33.82 E-value: 8.55e-03
|
|||||||
Blast search parameters | ||||
|