MULTISPECIES: LysR family transcriptional regulator [Pseudomonas]
LysR family transcriptional regulator( domain architecture ID 11426483)
LysR family transcriptional regulator containing an N-terminal HTH (helix-turn-helix) DNA-binding domain and a C-terminal substrate binding domain, which is structurally homologous to the type 2 periplasmic-binding (PBP2) fold proteins
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
LysR | COG0583 | DNA-binding transcriptional regulator, LysR family [Transcription]; |
7-290 | 1.70e-42 | |||||
DNA-binding transcriptional regulator, LysR family [Transcription]; : Pssm-ID: 440348 [Multi-domain] Cd Length: 256 Bit Score: 146.94 E-value: 1.70e-42
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
LysR | COG0583 | DNA-binding transcriptional regulator, LysR family [Transcription]; |
7-290 | 1.70e-42 | |||||
DNA-binding transcriptional regulator, LysR family [Transcription]; Pssm-ID: 440348 [Multi-domain] Cd Length: 256 Bit Score: 146.94 E-value: 1.70e-42
|
|||||||||
PRK11074 | PRK11074 | putative DNA-binding transcriptional regulator; Provisional |
14-243 | 7.28e-30 | |||||
putative DNA-binding transcriptional regulator; Provisional Pssm-ID: 182948 [Multi-domain] Cd Length: 300 Bit Score: 114.65 E-value: 7.28e-30
|
|||||||||
PBP2_HupR | cd08431 | The C-terminal substrate binding domain of LysR-type transcriptional regulator, HupR, which ... |
97-244 | 1.61e-23 | |||||
The C-terminal substrate binding domain of LysR-type transcriptional regulator, HupR, which regulates expression of the heme uptake receptor HupA; contains the type 2 periplasmic binding fold; HupR, a member of the LysR family, activates hupA transcription under low-iron conditions in the presence of hemin. The expression of many iron-uptake genes, such as hupA, is regulated at the transcriptional level by iron and an iron-binding repressor protein called Fur (ferric uptake regulation). Under iron-abundant conditions with heme, the active Fur repressor protein represses transcription of the iron-uptake gene hupA, and prevents transcriptional activation via HupR. Under low-iron conditions with heme, the Fur repressor is inactive and transcription of the hupA is allowed. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 176122 [Multi-domain] Cd Length: 195 Bit Score: 95.03 E-value: 1.61e-23
|
|||||||||
LysR_substrate | pfam03466 | LysR substrate binding domain; The structure of this domain is known and is similar to the ... |
97-290 | 8.33e-20 | |||||
LysR substrate binding domain; The structure of this domain is known and is similar to the periplasmic binding proteins. This domain binds a variety of ligands that caries in size and structure, such as amino acids, sugar phosphates, organic acids, metal cations, flavonoids, C6-ring carboxylic acids, H2O2, HOCl, homocysteine, NADPH, ATP, sulphate, muropeptides, acetate, salicylate, citrate, phenol- and quinolone derivatives, acetylserines, fatty acid CoA, shikimate, chorismate, homocysteine, indole-3-acetic acid, Na(I), c-di-GMP, ppGpp and hydrogen peroxide (Matilla et. al., FEMS Microbiology Reviews, fuab043, 45, 2021, 1. https://doi.org/10.1093/femsre/fuab043). Pssm-ID: 460931 [Multi-domain] Cd Length: 205 Bit Score: 85.42 E-value: 8.33e-20
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
LysR | COG0583 | DNA-binding transcriptional regulator, LysR family [Transcription]; |
7-290 | 1.70e-42 | |||||
DNA-binding transcriptional regulator, LysR family [Transcription]; Pssm-ID: 440348 [Multi-domain] Cd Length: 256 Bit Score: 146.94 E-value: 1.70e-42
|
|||||||||
PRK11074 | PRK11074 | putative DNA-binding transcriptional regulator; Provisional |
14-243 | 7.28e-30 | |||||
putative DNA-binding transcriptional regulator; Provisional Pssm-ID: 182948 [Multi-domain] Cd Length: 300 Bit Score: 114.65 E-value: 7.28e-30
|
|||||||||
PBP2_HupR | cd08431 | The C-terminal substrate binding domain of LysR-type transcriptional regulator, HupR, which ... |
97-244 | 1.61e-23 | |||||
The C-terminal substrate binding domain of LysR-type transcriptional regulator, HupR, which regulates expression of the heme uptake receptor HupA; contains the type 2 periplasmic binding fold; HupR, a member of the LysR family, activates hupA transcription under low-iron conditions in the presence of hemin. The expression of many iron-uptake genes, such as hupA, is regulated at the transcriptional level by iron and an iron-binding repressor protein called Fur (ferric uptake regulation). Under iron-abundant conditions with heme, the active Fur repressor protein represses transcription of the iron-uptake gene hupA, and prevents transcriptional activation via HupR. Under low-iron conditions with heme, the Fur repressor is inactive and transcription of the hupA is allowed. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 176122 [Multi-domain] Cd Length: 195 Bit Score: 95.03 E-value: 1.61e-23
|
|||||||||
PRK10094 | PRK10094 | HTH-type transcriptional activator AllS; |
12-245 | 2.77e-22 | |||||
HTH-type transcriptional activator AllS; Pssm-ID: 182237 [Multi-domain] Cd Length: 308 Bit Score: 94.49 E-value: 2.77e-22
|
|||||||||
LysR_substrate | pfam03466 | LysR substrate binding domain; The structure of this domain is known and is similar to the ... |
97-290 | 8.33e-20 | |||||
LysR substrate binding domain; The structure of this domain is known and is similar to the periplasmic binding proteins. This domain binds a variety of ligands that caries in size and structure, such as amino acids, sugar phosphates, organic acids, metal cations, flavonoids, C6-ring carboxylic acids, H2O2, HOCl, homocysteine, NADPH, ATP, sulphate, muropeptides, acetate, salicylate, citrate, phenol- and quinolone derivatives, acetylserines, fatty acid CoA, shikimate, chorismate, homocysteine, indole-3-acetic acid, Na(I), c-di-GMP, ppGpp and hydrogen peroxide (Matilla et. al., FEMS Microbiology Reviews, fuab043, 45, 2021, 1. https://doi.org/10.1093/femsre/fuab043). Pssm-ID: 460931 [Multi-domain] Cd Length: 205 Bit Score: 85.42 E-value: 8.33e-20
|
|||||||||
HTH_1 | pfam00126 | Bacterial regulatory helix-turn-helix protein, lysR family; |
8-67 | 6.64e-18 | |||||
Bacterial regulatory helix-turn-helix protein, lysR family; Pssm-ID: 459683 [Multi-domain] Cd Length: 60 Bit Score: 75.88 E-value: 6.64e-18
|
|||||||||
rbcR | CHL00180 | LysR transcriptional regulator; Provisional |
7-239 | 1.22e-14 | |||||
LysR transcriptional regulator; Provisional Pssm-ID: 177082 [Multi-domain] Cd Length: 305 Bit Score: 72.75 E-value: 1.22e-14
|
|||||||||
PRK11242 | PRK11242 | DNA-binding transcriptional regulator CynR; Provisional |
12-191 | 2.14e-13 | |||||
DNA-binding transcriptional regulator CynR; Provisional Pssm-ID: 183051 [Multi-domain] Cd Length: 296 Bit Score: 69.21 E-value: 2.14e-13
|
|||||||||
PBP2_LTTR_substrate | cd05466 | The substrate binding domain of LysR-type transcriptional regulators (LTTRs), a member of the ... |
97-289 | 2.92e-12 | |||||
The substrate binding domain of LysR-type transcriptional regulators (LTTRs), a member of the type 2 periplasmic binding fold protein superfamily; This model and hierarchy represent the the substrate-binding domain of the LysR-type transcriptional regulators that form the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, oxidative stress responses, nodule formation of nitrogen-fixing bacteria, synthesis of virulence factors, toxin production, attachment and secretion, to name a few. The structural topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the PBP2 superfamily includes the substrate-binding domains from ionotropic glutamate receptors, LysR-like transcriptional regulators, and unorthodox sensor proteins involved in signal transduction. Pssm-ID: 176102 [Multi-domain] Cd Length: 197 Bit Score: 64.54 E-value: 2.92e-12
|
|||||||||
PRK03635 | PRK03635 | ArgP/LysG family DNA-binding transcriptional regulator; |
9-100 | 6.90e-12 | |||||
ArgP/LysG family DNA-binding transcriptional regulator; Pssm-ID: 235144 [Multi-domain] Cd Length: 294 Bit Score: 64.79 E-value: 6.90e-12
|
|||||||||
PRK12684 | PRK12684 | CysB family HTH-type transcriptional regulator; |
8-190 | 2.00e-11 | |||||
CysB family HTH-type transcriptional regulator; Pssm-ID: 237173 [Multi-domain] Cd Length: 313 Bit Score: 63.46 E-value: 2.00e-11
|
|||||||||
PRK13348 | PRK13348 | HTH-type transcriptional regulator ArgP; |
7-76 | 8.29e-11 | |||||
HTH-type transcriptional regulator ArgP; Pssm-ID: 237357 [Multi-domain] Cd Length: 294 Bit Score: 61.53 E-value: 8.29e-11
|
|||||||||
PRK09986 | PRK09986 | LysR family transcriptional regulator; |
2-82 | 1.33e-10 | |||||
LysR family transcriptional regulator; Pssm-ID: 182183 [Multi-domain] Cd Length: 294 Bit Score: 60.89 E-value: 1.33e-10
|
|||||||||
PRK15421 | PRK15421 | HTH-type transcriptional regulator MetR; |
6-178 | 7.96e-10 | |||||
HTH-type transcriptional regulator MetR; Pssm-ID: 185319 [Multi-domain] Cd Length: 317 Bit Score: 58.88 E-value: 7.96e-10
|
|||||||||
PBP2_LTTR_like_4 | cd08440 | TThe C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional ... |
126-289 | 1.13e-09 | |||||
TThe C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator, contains the type 2 periplasmic binding fold; LysR-transcriptional regulators comprise the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to a name a few. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 176131 [Multi-domain] Cd Length: 197 Bit Score: 57.15 E-value: 1.13e-09
|
|||||||||
PRK12683 | PRK12683 | transcriptional regulator CysB-like protein; Reviewed |
25-193 | 2.34e-09 | |||||
transcriptional regulator CysB-like protein; Reviewed Pssm-ID: 237172 [Multi-domain] Cd Length: 309 Bit Score: 57.36 E-value: 2.34e-09
|
|||||||||
PRK09906 | PRK09906 | DNA-binding transcriptional regulator HcaR; Provisional |
12-92 | 7.49e-09 | |||||
DNA-binding transcriptional regulator HcaR; Provisional Pssm-ID: 182137 [Multi-domain] Cd Length: 296 Bit Score: 55.93 E-value: 7.49e-09
|
|||||||||
PRK15092 | PRK15092 | DNA-binding transcriptional repressor LrhA; Provisional |
8-78 | 8.69e-09 | |||||
DNA-binding transcriptional repressor LrhA; Provisional Pssm-ID: 237907 [Multi-domain] Cd Length: 310 Bit Score: 55.80 E-value: 8.69e-09
|
|||||||||
PRK10837 | PRK10837 | putative DNA-binding transcriptional regulator; Provisional |
5-86 | 7.74e-08 | |||||
putative DNA-binding transcriptional regulator; Provisional Pssm-ID: 182768 [Multi-domain] Cd Length: 290 Bit Score: 52.77 E-value: 7.74e-08
|
|||||||||
PRK10632 | PRK10632 | HTH-type transcriptional activator AaeR; |
17-83 | 1.93e-07 | |||||
HTH-type transcriptional activator AaeR; Pssm-ID: 182601 [Multi-domain] Cd Length: 309 Bit Score: 51.68 E-value: 1.93e-07
|
|||||||||
PRK12680 | PRK12680 | LysR family transcriptional regulator; |
6-239 | 3.07e-07 | |||||
LysR family transcriptional regulator; Pssm-ID: 183677 [Multi-domain] Cd Length: 327 Bit Score: 51.16 E-value: 3.07e-07
|
|||||||||
PBP2_GbpR | cd08435 | The C-terminal substrate binding domain of galactose-binding protein regulator contains the ... |
111-289 | 8.14e-07 | |||||
The C-terminal substrate binding domain of galactose-binding protein regulator contains the type 2 periplasmic binding fold; Galactose-binding protein regulator (GbpR), a member of the LysR family of bacterial transcriptional regulators, regulates the expression of chromosomal virulence gene chvE. The chvE gene is involved in the uptake of specific sugars, in chemotaxis to these sugars, and in the VirA-VirG two-component signal transduction system. In the presence of an inducing sugar such as L-arabinose, D-fucose, or D-galactose, GbpR activates chvE expression, while in the absence of an inducing sugar, GbpR represses expression. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 176126 [Multi-domain] Cd Length: 201 Bit Score: 48.81 E-value: 8.14e-07
|
|||||||||
PRK11151 | PRK11151 | DNA-binding transcriptional regulator OxyR; Provisional |
14-87 | 1.04e-06 | |||||
DNA-binding transcriptional regulator OxyR; Provisional Pssm-ID: 182999 [Multi-domain] Cd Length: 305 Bit Score: 49.26 E-value: 1.04e-06
|
|||||||||
PRK14997 | PRK14997 | LysR family transcriptional regulator; Provisional |
17-129 | 1.28e-06 | |||||
LysR family transcriptional regulator; Provisional Pssm-ID: 184959 [Multi-domain] Cd Length: 301 Bit Score: 49.22 E-value: 1.28e-06
|
|||||||||
PRK10341 | PRK10341 | transcriptional regulator TdcA; |
15-172 | 6.87e-06 | |||||
transcriptional regulator TdcA; Pssm-ID: 182391 [Multi-domain] Cd Length: 312 Bit Score: 46.78 E-value: 6.87e-06
|
|||||||||
PBP2_CysL_like | cd08420 | C-terminal substrate binding domain of LysR-type transcriptional regulator CysL, which ... |
137-289 | 1.60e-05 | |||||
C-terminal substrate binding domain of LysR-type transcriptional regulator CysL, which activates the transcription of the cysJI operon encoding sulfite reductase, contains the type 2 periplasmic binding fold; CysL, also known as YwfK, is a regular of sulfur metabolism in Bacillus subtilis. Sulfur is required for the synthesis of proteins and essential cofactors in all living organism. Sulfur can be assimilated either from inorganic sources (sulfate and thiosulfate), or from organic sources (sulfate esters, sulfamates, and sulfonates). CysL activates the transcription of the cysJI operon encoding sulfite reductase, which reduces sulfite to sulfide. Both cysL mutant and cysJI mutant are unable to grow using sulfate or sulfite as the sulfur source. Like other LysR-type regulators, CysL also negatively regulates its own transcription. In Escherichia coli, three LysR-type activators are involved in the regulation of sulfur metabolism: CysB, Cbl and MetR. The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 176112 [Multi-domain] Cd Length: 201 Bit Score: 44.79 E-value: 1.60e-05
|
|||||||||
PBP2_Nitroaromatics_like | cd08417 | The C-terminal substrate binding domain of LysR-type transcriptional regulators that involved ... |
110-246 | 1.82e-05 | |||||
The C-terminal substrate binding domain of LysR-type transcriptional regulators that involved in the catabolism of nitroaromatic/naphthalene compounds and that of related regulators; contains the type 2 periplasmic binding fold; This CD includes the C-terminal substrate binding domain of LysR-type transcriptional regulators involved in the catabolism of dinitrotoluene and similar compounds, such as DntR, NahR, and LinR. The transcription of the genes encoding enzymes involved in such degradation is regulated and expression of these enzymes is enhanced by inducers, which are either an intermediate in the metabolic pathway or compounds to be degraded. Also included are related LysR-type regulators clustered together in phylogenetic trees, including NodD, ToxR, LeuO, SyrM, TdcA, and PnbR. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 176109 [Multi-domain] Cd Length: 200 Bit Score: 44.90 E-value: 1.82e-05
|
|||||||||
PRK11716 | PRK11716 | HTH-type transcriptional activator IlvY; |
31-106 | 2.17e-05 | |||||
HTH-type transcriptional activator IlvY; Pssm-ID: 236961 [Multi-domain] Cd Length: 269 Bit Score: 45.19 E-value: 2.17e-05
|
|||||||||
PRK10086 | PRK10086 | DNA-binding transcriptional regulator DsdC; |
13-67 | 4.64e-05 | |||||
DNA-binding transcriptional regulator DsdC; Pssm-ID: 182231 [Multi-domain] Cd Length: 311 Bit Score: 44.22 E-value: 4.64e-05
|
|||||||||
PRK12682 | PRK12682 | transcriptional regulator CysB-like protein; Reviewed |
8-70 | 5.77e-05 | |||||
transcriptional regulator CysB-like protein; Reviewed Pssm-ID: 183679 [Multi-domain] Cd Length: 309 Bit Score: 43.83 E-value: 5.77e-05
|
|||||||||
PRK11233 | PRK11233 | nitrogen assimilation transcriptional regulator; Provisional |
17-150 | 5.81e-05 | |||||
nitrogen assimilation transcriptional regulator; Provisional Pssm-ID: 183045 [Multi-domain] Cd Length: 305 Bit Score: 43.90 E-value: 5.81e-05
|
|||||||||
PRK11139 | PRK11139 | DNA-binding transcriptional activator GcvA; Provisional |
20-74 | 7.38e-05 | |||||
DNA-binding transcriptional activator GcvA; Provisional Pssm-ID: 182990 [Multi-domain] Cd Length: 297 Bit Score: 43.68 E-value: 7.38e-05
|
|||||||||
cbl | PRK12679 | HTH-type transcriptional regulator Cbl; |
25-151 | 1.59e-04 | |||||
HTH-type transcriptional regulator Cbl; Pssm-ID: 183676 [Multi-domain] Cd Length: 316 Bit Score: 42.87 E-value: 1.59e-04
|
|||||||||
PRK09801 | PRK09801 | LysR family transcriptional regulator; |
12-200 | 4.03e-04 | |||||
LysR family transcriptional regulator; Pssm-ID: 182085 [Multi-domain] Cd Length: 310 Bit Score: 41.56 E-value: 4.03e-04
|
|||||||||
PRK03601 | PRK03601 | HTH-type transcriptional regulator HdfR; |
23-70 | 9.22e-04 | |||||
HTH-type transcriptional regulator HdfR; Pssm-ID: 235137 [Multi-domain] Cd Length: 275 Bit Score: 40.00 E-value: 9.22e-04
|
|||||||||
MarR_2 | pfam12802 | MarR family; The Mar proteins are involved in the multiple antibiotic resistance, a ... |
6-47 | 1.56e-03 | |||||
MarR family; The Mar proteins are involved in the multiple antibiotic resistance, a non-specific resistance system. The expression of the mar operon is controlled by a repressor, MarR. A large number of compounds induce transcription of the mar operon. This is thought to be due to the compound binding to MarR, and the resulting complex stops MarR binding to the DNA. With the MarR repression lost, transcription of the operon proceeds. The structure of MarR is known and shows MarR as a dimer with each subunit containing a winged-helix DNA binding motif. Pssm-ID: 432797 [Multi-domain] Cd Length: 60 Bit Score: 36.03 E-value: 1.56e-03
|
|||||||||
MarR | COG1846 | DNA-binding transcriptional regulator, MarR family [Transcription]; |
1-77 | 1.95e-03 | |||||
DNA-binding transcriptional regulator, MarR family [Transcription]; Pssm-ID: 441451 [Multi-domain] Cd Length: 142 Bit Score: 38.03 E-value: 1.95e-03
|
|||||||||
PBP2_LTTR_like_3 | cd08436 | The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional ... |
110-246 | 3.09e-03 | |||||
The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator, contains the type 2 periplasmic binding fold; LysR-transcriptional regulators comprise the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to a name a few. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 176127 [Multi-domain] Cd Length: 194 Bit Score: 37.97 E-value: 3.09e-03
|
|||||||||
PBP2_CbbR_RubisCO_like | cd08419 | The C-terminal substrate binding of LysR-type transcriptional regulator (CbbR) of RubisCO ... |
113-245 | 4.66e-03 | |||||
The C-terminal substrate binding of LysR-type transcriptional regulator (CbbR) of RubisCO operon, which is involved in the carbon dioxide fixation, contains the type 2 periplasmic binding fold; CbbR, a LysR-type transcriptional regulator, is required to activate expression of RubisCO, one of two unique enzymes in the Calvin-Benson-Bassham (CBB) cycle pathway. All plants, cyanobacteria, and many autotrophic bacteria use the CBB cycle to fix carbon dioxide. Thus, this cycle plays an essential role in assimilating CO2 into organic carbon on earth. The key CBB cycle enzyme is ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), which catalyzes the actual CO2 fixation reaction. The CO2 concentration affects the expression of RubisCO genes. It has also shown that NADPH enhances the DNA-binding ability of the CbbR. RubisCO is composed of eight large (CbbL) and eight small subunits (CbbS). The topology of this substrate-binding domain is most similar to that of the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 176111 Cd Length: 197 Bit Score: 37.49 E-value: 4.66e-03
|
|||||||||
PBP2_LTTR_like_1 | cd08421 | The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional ... |
98-246 | 6.72e-03 | |||||
The C-terminal substrate binding domain of an uncharacterized LysR-type transcriptional regulator, contains the type 2 periplasmic binding fold; LysR-transcriptional regulators comprise the largest family of prokaryotic transcription factor. Homologs of some of LTTRs with similar domain organizations are also found in the archaea and eukaryotic organisms. The LTTRs are composed of two functional domains joined by a linker helix involved in oligomerization: an N-terminal HTH (helix-turn-helix) domain, which is responsible for the DNA-binding specificity, and a C-terminal substrate-binding domain, which is structurally homologous to the type 2 periplasmic binding proteins. As also observed in the periplasmic binding proteins, the C-terminal domain of the bacterial transcriptional repressor undergoes a conformational change upon substrate binding which in turn changes the DNA binding affinity of the repressor. The genes controlled by the LTTRs have diverse functional roles including amino acid biosynthesis, CO2 fixation, antibiotic resistance, degradation of aromatic compounds, nodule formation of nitrogen-fixing bacteria, and synthesis of virulence factors, to a name a few. This substrate-binding domain shows significant homology to the type 2 periplasmic binding proteins (PBP2), which are responsible for the uptake of a variety of substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. The PBP2 bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Pssm-ID: 176113 Cd Length: 198 Bit Score: 37.12 E-value: 6.72e-03
|
|||||||||
Blast search parameters | ||||
|