HAD family hydrolase [Clostridioides difficile]
HAD family hydrolase( domain architecture ID 11560819)
HAD (Haloacid Dehalogenase) family hydrolase such as Pseudomonas aeruginosa 5'-nucleotidase, which specifically dephosphorylates nucleoside 5'-monophosphates to nucleosides and inorganic phosphate
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
HAD_5NT | cd04302 | haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to the Pseudomonas aeruginosa PA0065; ... |
8-215 | 2.59e-111 | ||||
haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to the Pseudomonas aeruginosa PA0065; 5'-nucleotidases dephosphorylate nucleoside 5'-monophosphates to nucleosides and inorganic phosphate. Purified Pseudomonas aeruginosa PA0065 displayed high activity toward 5'-UMP and 5'-IMP, significant activity against 5'-XMP and 5'-TMP, and low activity against 5'-CMP. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. : Pssm-ID: 319798 [Multi-domain] Cd Length: 209 Bit Score: 317.23 E-value: 2.59e-111
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
HAD_5NT | cd04302 | haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to the Pseudomonas aeruginosa PA0065; ... |
8-215 | 2.59e-111 | ||||
haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to the Pseudomonas aeruginosa PA0065; 5'-nucleotidases dephosphorylate nucleoside 5'-monophosphates to nucleosides and inorganic phosphate. Purified Pseudomonas aeruginosa PA0065 displayed high activity toward 5'-UMP and 5'-IMP, significant activity against 5'-XMP and 5'-TMP, and low activity against 5'-CMP. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319798 [Multi-domain] Cd Length: 209 Bit Score: 317.23 E-value: 2.59e-111
|
||||||||
Gph | COG0546 | Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; |
5-216 | 7.00e-63 | ||||
Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; Pssm-ID: 440312 [Multi-domain] Cd Length: 214 Bit Score: 194.38 E-value: 7.00e-63
|
||||||||
HAD_2 | pfam13419 | Haloacid dehalogenase-like hydrolase; |
8-186 | 6.93e-34 | ||||
Haloacid dehalogenase-like hydrolase; Pssm-ID: 404323 [Multi-domain] Cd Length: 178 Bit Score: 119.23 E-value: 6.93e-34
|
||||||||
PRK13288 | PRK13288 | pyrophosphatase PpaX; Provisional |
8-215 | 7.72e-28 | ||||
pyrophosphatase PpaX; Provisional Pssm-ID: 237336 [Multi-domain] Cd Length: 214 Bit Score: 104.73 E-value: 7.72e-28
|
||||||||
PGP_bact | TIGR01449 | 2-phosphoglycolate phosphatase, prokaryotic; PGP is an essential enzyme in the glycolate ... |
8-215 | 1.52e-15 | ||||
2-phosphoglycolate phosphatase, prokaryotic; PGP is an essential enzyme in the glycolate salvage pathway in higher organisms (photorespiration in plants). Phosphoglycolate results from the oxidase activity of RubisCO in the Calvin cycle when concentrations of carbon dioxide are low relative to oxygen. In Ralstonia (Alcaligenes) eutropha and Rhodobacter sphaeroides, the PGP gene (CbbZ) is located on an operon along with other Calvin cycle enzymes including RubisCO. The only other pertinent experimental evidence concerns the gene from E. coli. The in vitro activity of the Ralstonia and Escherichia enzymes was determined with crude cell extracts of strains containing PGP on expression plasmids and compared to controls. In E. coli, however, there does not appear to be a functional Calvin cycle (RubisCO is absent), although the E. coli PGP gene (gph) is on the same operon (dam) with ribulose-5-phosphate-3-epimerase (rpe), a gene in the pentose-phosphate pathway (along with other, unrelated genes). The E. coli enzyme is not expressed under normal laboratory conditions; the pathway to which it belongs has not been determined. In fact, the possibility exists, although unlikely, that the E. coli enzyme and others within this equivalog have as their physiological substrate another, closely related molecule. The other seed chosen for this model, from Xylella fastidiosa has no experimental evidence, but is a plant pathogen and thus may obtain phosphoglycolate from its host. This model has been restricted to encompass only proteobacteria as no related PGP has been verified outside of this clade. Sequences from Aquifex aeolicus and Treponema pallidum fall between the trusted and noise cutoffs. Just below the noise cutoff is a gene which is part of the operon for the biosynthesis of the blue pigment, indigoidine, from Erwinia (Pectobacterium) chrysanthemi, a plant pathogen. It does not seem likely, considering the proposed biosynthetic mechanism, that the dephosphorylation of phosphoglycolate or a closely related compound is required. Possibly, this gene is fortuitously located in this operon, or has an indirect relationship to the necessity for the biosynthesis of this compound. Sequences from 11 species have been annotated as PGP or putative PGP but fall below the noise cutoff. None of these have experimental validation. This enzyme is a member of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolase enzymes (pfam00702). [Energy metabolism, Sugars] Pssm-ID: 130516 [Multi-domain] Cd Length: 213 Bit Score: 72.16 E-value: 1.52e-15
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
HAD_5NT | cd04302 | haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to the Pseudomonas aeruginosa PA0065; ... |
8-215 | 2.59e-111 | ||||
haloacid dehalogenase (HAD)-like 5'-nucleotidases similar to the Pseudomonas aeruginosa PA0065; 5'-nucleotidases dephosphorylate nucleoside 5'-monophosphates to nucleosides and inorganic phosphate. Purified Pseudomonas aeruginosa PA0065 displayed high activity toward 5'-UMP and 5'-IMP, significant activity against 5'-XMP and 5'-TMP, and low activity against 5'-CMP. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319798 [Multi-domain] Cd Length: 209 Bit Score: 317.23 E-value: 2.59e-111
|
||||||||
Gph | COG0546 | Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; |
5-216 | 7.00e-63 | ||||
Phosphoglycolate phosphatase, HAD superfamily [Energy production and conversion]; Pssm-ID: 440312 [Multi-domain] Cd Length: 214 Bit Score: 194.38 E-value: 7.00e-63
|
||||||||
HAD_PPase | cd02616 | pyrophosphatase similar to Bacillus subtilis PpaX; This family includes Bacillus subtilis PpaX ... |
5-214 | 2.83e-34 | ||||
pyrophosphatase similar to Bacillus subtilis PpaX; This family includes Bacillus subtilis PpaX which hydrolyzes pyrophosphate formed during serine-46-phosphorylated HPr (P-Ser-HPr) dephosphorylation by the bifunctional enzyme HPr kinase/phosphorylase. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319797 [Multi-domain] Cd Length: 207 Bit Score: 121.23 E-value: 2.83e-34
|
||||||||
HAD_2 | pfam13419 | Haloacid dehalogenase-like hydrolase; |
8-186 | 6.93e-34 | ||||
Haloacid dehalogenase-like hydrolase; Pssm-ID: 404323 [Multi-domain] Cd Length: 178 Bit Score: 119.23 E-value: 6.93e-34
|
||||||||
PRK13288 | PRK13288 | pyrophosphatase PpaX; Provisional |
8-215 | 7.72e-28 | ||||
pyrophosphatase PpaX; Provisional Pssm-ID: 237336 [Multi-domain] Cd Length: 214 Bit Score: 104.73 E-value: 7.72e-28
|
||||||||
PRK13222 | PRK13222 | N-acetylmuramic acid 6-phosphate phosphatase MupP; |
1-215 | 4.84e-27 | ||||
N-acetylmuramic acid 6-phosphate phosphatase MupP; Pssm-ID: 237310 [Multi-domain] Cd Length: 226 Bit Score: 102.97 E-value: 4.84e-27
|
||||||||
HAD_PGPase | cd16417 | Escherichia coli Gph phosphoglycolate phosphatase and related proteins; belongs to the ... |
8-215 | 2.75e-22 | ||||
Escherichia coli Gph phosphoglycolate phosphatase and related proteins; belongs to the haloacid dehalogenase-like superfamily; Phosphoglycolate phosphatase (PGP; EC 3.1.3.18) catalyzes the conversion of 2-phosphoglycolate into glycolate and phosphate. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase (C-Cl bond hydrolysis), azetidine hydrolase (C-N bond hydrolysis); phosphonoacetaldehyde hydrolase (C-P bond hydrolysis), phosphoserine phosphatase and phosphomannomutase (CO-P bond hydrolysis), P-type ATPases (PO-P bond hydrolysis) and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319854 [Multi-domain] Cd Length: 212 Bit Score: 89.99 E-value: 2.75e-22
|
||||||||
YigB | COG1011 | FMN and 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB, HAD superfamily ... |
5-215 | 1.23e-19 | ||||
FMN and 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB, HAD superfamily (riboflavin biosynthesis) [Coenzyme transport and metabolism]; Pssm-ID: 440635 [Multi-domain] Cd Length: 220 Bit Score: 83.15 E-value: 1.23e-19
|
||||||||
Hydrolase | pfam00702 | haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha ... |
5-180 | 7.61e-19 | ||||
haloacid dehalogenase-like hydrolase; This family is structurally different from the alpha/beta hydrolase family (pfam00561). This family includes L-2-haloacid dehalogenase, epoxide hydrolases and phosphatases. The structure of the family consists of two domains. One is an inserted four helix bundle, which is the least well conserved region of the alignment, between residues 16 and 96 of Swiss:P24069. The rest of the fold is composed of the core alpha/beta domain. Those members with the characteriztic DxD triad at the N-terminus are probably phosphatidylglycerolphosphate (PGP) phosphatases involved in cardiolipin biosynthesis in the mitochondria. Pssm-ID: 459910 [Multi-domain] Cd Length: 191 Bit Score: 80.71 E-value: 7.61e-19
|
||||||||
PRK13223 | PRK13223 | phosphoglycolate phosphatase; Provisional |
7-208 | 7.25e-18 | ||||
phosphoglycolate phosphatase; Provisional Pssm-ID: 171912 [Multi-domain] Cd Length: 272 Bit Score: 79.52 E-value: 7.25e-18
|
||||||||
HAD_PGPase | cd04303 | phosphoglycolate phosphatase, similar to Synechococcus elongates phosphoglycolate phosphatase ... |
8-213 | 7.95e-17 | ||||
phosphoglycolate phosphatase, similar to Synechococcus elongates phosphoglycolate phosphatase PGP/CbbZ; Phosphoglycolate phosphatase catalyzes the dephosphorylation of phosphoglycolate; its activity requires divalent cations, especially Mg++. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319799 [Multi-domain] Cd Length: 201 Bit Score: 75.47 E-value: 7.95e-17
|
||||||||
YcjU | COG0637 | Beta-phosphoglucomutase, HAD superfamily [Carbohydrate transport and metabolism]; |
8-186 | 3.54e-16 | ||||
Beta-phosphoglucomutase, HAD superfamily [Carbohydrate transport and metabolism]; Pssm-ID: 440402 [Multi-domain] Cd Length: 208 Bit Score: 73.70 E-value: 3.54e-16
|
||||||||
PGP_bact | TIGR01449 | 2-phosphoglycolate phosphatase, prokaryotic; PGP is an essential enzyme in the glycolate ... |
8-215 | 1.52e-15 | ||||
2-phosphoglycolate phosphatase, prokaryotic; PGP is an essential enzyme in the glycolate salvage pathway in higher organisms (photorespiration in plants). Phosphoglycolate results from the oxidase activity of RubisCO in the Calvin cycle when concentrations of carbon dioxide are low relative to oxygen. In Ralstonia (Alcaligenes) eutropha and Rhodobacter sphaeroides, the PGP gene (CbbZ) is located on an operon along with other Calvin cycle enzymes including RubisCO. The only other pertinent experimental evidence concerns the gene from E. coli. The in vitro activity of the Ralstonia and Escherichia enzymes was determined with crude cell extracts of strains containing PGP on expression plasmids and compared to controls. In E. coli, however, there does not appear to be a functional Calvin cycle (RubisCO is absent), although the E. coli PGP gene (gph) is on the same operon (dam) with ribulose-5-phosphate-3-epimerase (rpe), a gene in the pentose-phosphate pathway (along with other, unrelated genes). The E. coli enzyme is not expressed under normal laboratory conditions; the pathway to which it belongs has not been determined. In fact, the possibility exists, although unlikely, that the E. coli enzyme and others within this equivalog have as their physiological substrate another, closely related molecule. The other seed chosen for this model, from Xylella fastidiosa has no experimental evidence, but is a plant pathogen and thus may obtain phosphoglycolate from its host. This model has been restricted to encompass only proteobacteria as no related PGP has been verified outside of this clade. Sequences from Aquifex aeolicus and Treponema pallidum fall between the trusted and noise cutoffs. Just below the noise cutoff is a gene which is part of the operon for the biosynthesis of the blue pigment, indigoidine, from Erwinia (Pectobacterium) chrysanthemi, a plant pathogen. It does not seem likely, considering the proposed biosynthetic mechanism, that the dephosphorylation of phosphoglycolate or a closely related compound is required. Possibly, this gene is fortuitously located in this operon, or has an indirect relationship to the necessity for the biosynthesis of this compound. Sequences from 11 species have been annotated as PGP or putative PGP but fall below the noise cutoff. None of these have experimental validation. This enzyme is a member of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolase enzymes (pfam00702). [Energy metabolism, Sugars] Pssm-ID: 130516 [Multi-domain] Cd Length: 213 Bit Score: 72.16 E-value: 1.52e-15
|
||||||||
HAD-SF-IA-v1 | TIGR01549 | haloacid dehalogenase superfamily, subfamily IA, variant 1 with third motif having Dx(3-4)D or ... |
7-180 | 5.02e-15 | ||||
haloacid dehalogenase superfamily, subfamily IA, variant 1 with third motif having Dx(3-4)D or Dx(3-4)E; This model represents part of one structural subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Subfamily I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Subfamily II consists of sequences in which the capping domain is found between the second and third motifs. Subfamily III sequences have no capping domain in either of these positions.The Subfamily IA and IB capping domains are predicted by PSI-PRED to consist of an alpha helical bundle. Subfamily I encompasses such a wide region of sequence space (the sequences are highly divergent) that representing it with a single model is impossible, resulting in an overly broad description which allows in many unrelated sequences. Subfamily IA and IB are separated based on an aparrent phylogenetic bifurcation. Subfamily IA is still too broad to model, but cannot be further subdivided into large chunks based on phylogenetic trees. Of the three motifs defining the HAD superfamily, the third has three variant forms: (1) hhhhsDxxx(x)(D/E), (2) hhhhssxxx(x)D and (3) hhhhDDxxx(x)s where _s_ refers to a small amino acid and _h_ to a hydrophobic one. All three of these variants are found in subfamily IA. Individual models were made based on seeds exhibiting only one of the variants each. Variant 1 (this model) is found in the enzymes phosphoglycolate phosphatase (TIGR01449) and enolase-phosphatase. These three variant models (see also TIGR01493 and TIGR01509) were created withthe knowledge that there will be overlap among them - this is by design and serves the purpose of eliminating the overlap with models of more distantly relatedHAD subfamilies caused by an overly broad single model. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273686 [Multi-domain] Cd Length: 164 Bit Score: 69.73 E-value: 5.02e-15
|
||||||||
HAD_like | cd01427 | Haloacid dehalogenase-like hydrolases; The haloacid dehalogenase-like (HAD) superfamily ... |
91-186 | 1.23e-14 | ||||
Haloacid dehalogenase-like hydrolases; The haloacid dehalogenase-like (HAD) superfamily includes L-2-haloacid dehalogenase, epoxide hydrolase, phosphoserine phosphatase, phosphomannomutase, phosphoglycolate phosphatase, P-type ATPase, and many others. This superfamily includes a variety of enzymes that catalyze the cleavage of substrate C-Cl, P-C, and P-OP bonds via nucleophilic substitution pathways. All of which use a nucleophilic aspartate in their phosphoryl transfer reaction. They catalyze nucleophilic substitution reactions at phosphorus or carbon centers, using a conserved Asp carboxylate in covalent catalysis. All members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. Members of this superfamily are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319763 [Multi-domain] Cd Length: 106 Bit Score: 67.04 E-value: 1.23e-14
|
||||||||
HAD_YsbA-like | cd07523 | uncharacterized family of the haloacid dehalogenase-like superfamily, similar to the ... |
9-184 | 1.77e-13 | ||||
uncharacterized family of the haloacid dehalogenase-like superfamily, similar to the uncharacterized Lactococcus lactis YsbA; The specific function of Lactococcus lactis YsbA is unknown. Members of this family belong to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases Pssm-ID: 319825 [Multi-domain] Cd Length: 173 Bit Score: 65.86 E-value: 1.77e-13
|
||||||||
HAD_PGPase | cd07512 | haloacid dehalogenase-like superfamily phosphoglycolate phosphatase, similar to Rhodobacter ... |
7-191 | 5.31e-12 | ||||
haloacid dehalogenase-like superfamily phosphoglycolate phosphatase, similar to Rhodobacter sphaeroides CbbZ; Phosphoglycolate phosphatase catalyzes the dephosphorylation of phosphoglycolate; its activity requires divalent cations, especially Mg++. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319815 [Multi-domain] Cd Length: 214 Bit Score: 62.33 E-value: 5.31e-12
|
||||||||
HAD_like | cd07533 | uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar ... |
7-211 | 6.55e-10 | ||||
uncharacterized family of the haloacid dehalogenase-like (HAD) hydrolase superfamily, similar to Parvibaculum lavamentivorans HAD-superfamily hydrolase, subfamily IA, variant 1; This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319835 [Multi-domain] Cd Length: 207 Bit Score: 56.64 E-value: 6.55e-10
|
||||||||
HAD | pfam12710 | haloacid dehalogenase-like hydrolase; |
8-173 | 2.02e-08 | ||||
haloacid dehalogenase-like hydrolase; Pssm-ID: 432733 [Multi-domain] Cd Length: 188 Bit Score: 52.15 E-value: 2.02e-08
|
||||||||
Hydrolase_like | pfam13242 | HAD-hyrolase-like; |
159-208 | 4.79e-08 | ||||
HAD-hyrolase-like; Pssm-ID: 433056 [Multi-domain] Cd Length: 75 Bit Score: 48.77 E-value: 4.79e-08
|
||||||||
HAD-SF-IA-v3 | TIGR01509 | haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED; ... |
7-186 | 1.81e-07 | ||||
haloacid dehalogenase superfamily, subfamily IA, variant 3 with third motif having DD or ED; This model represents part of one structural subfamily of the Haloacid Dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The superfamily is defined by the presence of three short catalytic motifs. The subfamilies are defined based on the location and the observed or predicted fold of a so-called "capping domain", or the absence of such a domain. Subfamily I consists of sequences in which the capping domain is found in between the first and second catalytic motifs. Subfamily II consists of sequences in which the capping domain is found between the second and third motifs. Subfamily III sequences have no capping domain in either of these positions. The Subfamily IA and IB capping domains are predicted by PSI-PRED to consist of an alpha helical bundle. Subfamily I encompasses such a wide region of sequence space (the sequences are highly divergent) that representing it with a single model is impossible, resulting in an overly broad description which allows in many unrelated sequences. Subfamily IA and IB are separated based on an aparrent phylogenetic bifurcation. Subfamily IA is still too broad to model, but cannot be further subdivided into large chunks based on phylogenetic trees. Of the three motifs defining the HAD superfamily, the third has three variant forms: (1) hhhhsDxxx(x)D, (2) hhhhssxxx(x)D and (3) hhhhDDxxx(x)s where _s_ refers to a small amino acid and _h_ to a hydrophobic one. All three of these variants are found in subfamily IA. Individual models were made based on seeds exhibiting only one of the variants each. Variant 3 (this model) is found in the enzymes beta-phosphoglucomutase (TIGR01990) and deoxyglucose-6-phosphatase, while many other enzymes of subfamily IA exhibit this variant as well as variant 1 (TIGR01549). These three variant models were created with the knowledge that there will be overlap among them - this is by design and serves the purpose of eliminating the overlap with models of more distantly related HAD subfamilies caused by an overly broad single model. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273662 [Multi-domain] Cd Length: 178 Bit Score: 49.34 E-value: 1.81e-07
|
||||||||
PRK06698 | PRK06698 | bifunctional 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase/phosphatase; Validated |
6-215 | 2.81e-07 | ||||
bifunctional 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase/phosphatase; Validated Pssm-ID: 136007 [Multi-domain] Cd Length: 459 Bit Score: 50.01 E-value: 2.81e-07
|
||||||||
HAD_Pase_UmpH-like | cd07530 | UmpH/NagD family phosphatase, similar to Escherichia coli UmpH UMP phosphatase/NagD nucleotide ... |
159-208 | 2.85e-07 | ||||
UmpH/NagD family phosphatase, similar to Escherichia coli UmpH UMP phosphatase/NagD nucleotide phosphatase and Mycobacterium tuberculosis Rv1692 glycerol 3-phosphate phosphatase; Escherichia coli UmpH/NagD is a ribonucleoside tri-, di-, and monophosphatase with a preference for purines, it shows peak activity with UMP and functions in UMP-degradation. It is also an effective phosphatase with AMP, GMP and CMP. Mycobacterium tuberculosis phosphatase, Rv1692 is a glycerol 3-phosphate phosphatase. Rv1692 is the final enzyme involved in glycerophospholipid recycling/catabolism. This subfamily belongs to the UmpH/NagD phosphatase family, and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319832 [Multi-domain] Cd Length: 247 Bit Score: 49.51 E-value: 2.85e-07
|
||||||||
YjjG/YfnB | TIGR02254 | noncanonical pyrimidine nucleotidase, YjjG family; This HAD superfamily includes including ... |
5-215 | 8.53e-06 | ||||
noncanonical pyrimidine nucleotidase, YjjG family; This HAD superfamily includes including YjjG from E. coli and YfnB from B. subtilis. YjjG has been shown to act as a house-cleaning enzyme, cleaving nucleotides with non-canonical nucleotide bases. This family is a member of the haloacid dehalogenase (HAD) superfamily of hydrolases which are characterized by three conserved sequence motifs. By virtue of an alpha helical domain in-between the first and second conserved motif, this family is a member of subfamily IA (TIGR01549). Pssm-ID: 162788 [Multi-domain] Cd Length: 224 Bit Score: 45.17 E-value: 8.53e-06
|
||||||||
HAD_Neu5Ac-Pase_like | cd04305 | human N-acetylneuraminate-9-phosphate phosphatase, Escherichia coli house-cleaning phosphatase ... |
85-184 | 1.76e-05 | ||||
human N-acetylneuraminate-9-phosphate phosphatase, Escherichia coli house-cleaning phosphatase YjjG, and related phosphatases; N-acetylneuraminate-9- phosphatase (Neu5Ac-9-Pase; E.C. 3.1.3.29) catalyzes the dephosphorylation of N-acylneuraminate 9-phosphate during the synthesis of N-acetylneuraminate; Escherichia coli nucleotide phosphatase YjjG has a broad pyrimidine nucleotide activity spectrum and functions as an in vivo house-cleaning phosphatase for noncanonical pyrimidine nucleotides. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319800 [Multi-domain] Cd Length: 109 Bit Score: 42.53 E-value: 1.76e-05
|
||||||||
HAD_Pase_UmpH-like | cd16422 | uncharacterized subfamily of the UmpH/NagD phosphatase family, belongs to the haloacid ... |
160-210 | 7.72e-04 | ||||
uncharacterized subfamily of the UmpH/NagD phosphatase family, belongs to the haloacid dehalogenase-like superfamily; This uncharacterized subfamily belongs to the UmpH/NagD phosphatase family and to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319858 [Multi-domain] Cd Length: 247 Bit Score: 39.34 E-value: 7.72e-04
|
||||||||
HAD_sEH-N_like | cd02603 | N-terminal lipase phosphatase domain of human soluble epoxide hydrolase, Escherichia coli YihX ... |
8-184 | 1.19e-03 | ||||
N-terminal lipase phosphatase domain of human soluble epoxide hydrolase, Escherichia coli YihX/HAD4 alpha-D-glucose 1-phosphate phosphatase, and related domains, may be inactive; This family includes the N-terminal phosphatase domain of human soluble epoxide hydrolase (sEH). sEH is a bifunctional enzyme with two distinct enzyme activities, the C-terminal domain has epoxide hydrolysis activity and the N-terminal domain (Ntermphos), which belongs to this family, has lipid phosphatase activity. The latter prefers mono-phosphate esters, and lysophosphatidic acids (LPAs) are the best natural substrates found to date. In addition this family includes Gallus gallus sEH and Xenopus sEH which appears to lack phosphatase activity, and Escherichia coli YihX/HAD4 which selectively hydrolyzes alpha-Glucose-1-P, phosphatase, has significant phosphatase activity against pyridoxal phosphate, and has low beta phosphoglucomutase activity. This family belongs to the haloacid dehalogenase-like (HAD) hydrolases, a large superfamily of diverse enzymes that catalyze carbon or phosphoryl group transfer reactions on a range of substrates, using an active site aspartate in nucleophilic catalysis. Members of this superfamily include 2-L-haloalkanoic acid dehalogenase, azetidine hydrolase, phosphonoacetaldehyde hydrolase, phosphoserine phosphatase, phosphomannomutase, P-type ATPases and many others. HAD hydrolases are found in all three kingdoms of life, and most genomes are predicted to contain multiple HAD-like proteins. Members possess a highly conserved alpha/beta core domain, and many also possess a small cap domain, the fold and function of which is variable. HAD hydrolases are sometimes referred to as belonging to the DDDD superfamily of phosphohydrolases. Pssm-ID: 319790 [Multi-domain] Cd Length: 195 Bit Score: 38.48 E-value: 1.19e-03
|
||||||||
PRK06769 | PRK06769 | HAD-IIIA family hydrolase; |
159-209 | 7.11e-03 | ||||
HAD-IIIA family hydrolase; Pssm-ID: 180686 [Multi-domain] Cd Length: 173 Bit Score: 35.86 E-value: 7.11e-03
|
||||||||
HAD-SF-IB-hyp1 | TIGR01490 | HAD-superfamily subfamily IB hydrolase, TIGR01490; This hypothetical equivalog is a member of ... |
7-128 | 7.22e-03 | ||||
HAD-superfamily subfamily IB hydrolase, TIGR01490; This hypothetical equivalog is a member of the IB subfamily (TIGR01488) of the haloacid dehalogenase (HAD) superfamily of aspartate-nucleophile hydrolases. The sequences modelled here are all bacterial. The IB subfamily includes the enzyme phosphoserine phosphatase (TIGR00338). Due to this relationship, several of these sequences have been annotated as "phosphoserine phosphatase related proteins," or "Phosphoserine phosphatase-family enzymes." There is presently no evidence that any of the enzymes in this model possess PSPase activity. OMNI|NTL01ML1250 is annotated as a "possible transferase," however this is due to the C-terminal domain found on this sequence which is homologous to a group of glycerol-phosphate acyltransferases (between trusted and noise to TIGR00530). A subset of these sequences including OMNI|CC1962, the Caulobacter crescentus CicA protein cluster together and may represent a separate equivalog. [Unknown function, Enzymes of unknown specificity] Pssm-ID: 273654 [Multi-domain] Cd Length: 202 Bit Score: 36.16 E-value: 7.22e-03
|
||||||||
PGMB-YQAB-SF | TIGR02009 | beta-phosphoglucomutase family hydrolase; This subfamily model groups together three clades: ... |
5-136 | 9.15e-03 | ||||
beta-phosphoglucomutase family hydrolase; This subfamily model groups together three clades: the characterized beta-phosphoglucomutases (including those from E.coli, B.subtilus and L.lactis, TIGR01990), a clade of putative bPGM's from mycobacteria and a clade including the uncharacterized E.coli and H.influenzae yqaB genes which may prove to be beta-mutases of a related 1-phosphosugar. All of these are members of the larger Haloacid dehalogenase (HAD) subfamily IA and include the "variant 3" glu-asp version of the third conserved HAD domain (TIGR01509). Pssm-ID: 213673 [Multi-domain] Cd Length: 185 Bit Score: 35.78 E-value: 9.15e-03
|
||||||||
Blast search parameters | ||||
|