16S rRNA (guanine(527)-N(7))-methyltransferase RsmG specifically methylates the N7 position of guanine in position 527 of 16S rRNA; requires the intact 30S subunit for methylation
16S rRNA G527 N7-methylase RsmG (former glucose-inhibited division protein B) [Translation, ...
2-221
2.17e-96
16S rRNA G527 N7-methylase RsmG (former glucose-inhibited division protein B) [Translation, ribosomal structure and biogenesis]; 16S rRNA G527 N7-methylase RsmG (former glucose-inhibited division protein B) is part of the Pathway/BioSystem: 16S rRNA modification
:
Pssm-ID: 440126 Cd Length: 211 Bit Score: 280.50 E-value: 2.17e-96
16S rRNA G527 N7-methylase RsmG (former glucose-inhibited division protein B) [Translation, ...
2-221
2.17e-96
16S rRNA G527 N7-methylase RsmG (former glucose-inhibited division protein B) [Translation, ribosomal structure and biogenesis]; 16S rRNA G527 N7-methylase RsmG (former glucose-inhibited division protein B) is part of the Pathway/BioSystem: 16S rRNA modification
Pssm-ID: 440126 Cd Length: 211 Bit Score: 280.50 E-value: 2.17e-96
rRNA small subunit methyltransferase G; This is a family of bacterial glucose inhibited ...
21-213
2.69e-63
rRNA small subunit methyltransferase G; This is a family of bacterial glucose inhibited division proteins these are probably involved in the regulation of cell devision. GidB has been shown to be a methyltransferase G specific to the rRNA small subunit. Previously identified as a glucose-inhibited division protein B that appears to be present and in a single copy in all complete eubacterial genomes so far sequenced. GidB specifically methylates the N7 position of a guanosine in 16S rRNA.
Pssm-ID: 396880 Cd Length: 184 Bit Score: 195.58 E-value: 2.69e-63
16S rRNA (guanine(527)-N(7))-methyltransferase RsmG; RsmG was previously called GidB ...
28-215
5.81e-55
16S rRNA (guanine(527)-N(7))-methyltransferase RsmG; RsmG was previously called GidB (glucose-inhibited division protein B). It is present and a single copy in nearly all complete eubacterial genomes. It is missing only from some obligate intracellular species of various lineages (Chlamydiae, Ehrlichia, Wolbachia, Anaplasma, Buchnera, etc.). RsmG shows a methytransferase fold in its the crystal structure, and acts as a 7-methylguanosine (m(7)G) methyltransferase, apparently specific to 16S rRNA. [Protein synthesis, tRNA and rRNA base modification]
Pssm-ID: 272928 Cd Length: 181 Bit Score: 173.98 E-value: 5.81e-55
S-adenosylmethionine-dependent methyltransferases (SAM or AdoMet-MTase), class I; ...
72-172
2.85e-04
S-adenosylmethionine-dependent methyltransferases (SAM or AdoMet-MTase), class I; AdoMet-MTases are enzymes that use S-adenosyl-L-methionine (SAM or AdoMet) as a substrate for methyltransfer, creating the product S-adenosyl-L-homocysteine (AdoHcy). There are at least five structurally distinct families of AdoMet-MTases, class I being the largest and most diverse. Within this class enzymes can be classified by different substrate specificities (small molecules, lipids, nucleic acids, etc.) and different target atoms for methylation (nitrogen, oxygen, carbon, sulfur, etc.).
Pssm-ID: 100107 [Multi-domain] Cd Length: 107 Bit Score: 39.34 E-value: 2.85e-04
16S rRNA G527 N7-methylase RsmG (former glucose-inhibited division protein B) [Translation, ...
2-221
2.17e-96
16S rRNA G527 N7-methylase RsmG (former glucose-inhibited division protein B) [Translation, ribosomal structure and biogenesis]; 16S rRNA G527 N7-methylase RsmG (former glucose-inhibited division protein B) is part of the Pathway/BioSystem: 16S rRNA modification
Pssm-ID: 440126 Cd Length: 211 Bit Score: 280.50 E-value: 2.17e-96
rRNA small subunit methyltransferase G; This is a family of bacterial glucose inhibited ...
21-213
2.69e-63
rRNA small subunit methyltransferase G; This is a family of bacterial glucose inhibited division proteins these are probably involved in the regulation of cell devision. GidB has been shown to be a methyltransferase G specific to the rRNA small subunit. Previously identified as a glucose-inhibited division protein B that appears to be present and in a single copy in all complete eubacterial genomes so far sequenced. GidB specifically methylates the N7 position of a guanosine in 16S rRNA.
Pssm-ID: 396880 Cd Length: 184 Bit Score: 195.58 E-value: 2.69e-63
16S rRNA (guanine(527)-N(7))-methyltransferase RsmG; RsmG was previously called GidB ...
28-215
5.81e-55
16S rRNA (guanine(527)-N(7))-methyltransferase RsmG; RsmG was previously called GidB (glucose-inhibited division protein B). It is present and a single copy in nearly all complete eubacterial genomes. It is missing only from some obligate intracellular species of various lineages (Chlamydiae, Ehrlichia, Wolbachia, Anaplasma, Buchnera, etc.). RsmG shows a methytransferase fold in its the crystal structure, and acts as a 7-methylguanosine (m(7)G) methyltransferase, apparently specific to 16S rRNA. [Protein synthesis, tRNA and rRNA base modification]
Pssm-ID: 272928 Cd Length: 181 Bit Score: 173.98 E-value: 5.81e-55
S-adenosylmethionine-dependent methyltransferases (SAM or AdoMet-MTase), class I; ...
72-172
2.85e-04
S-adenosylmethionine-dependent methyltransferases (SAM or AdoMet-MTase), class I; AdoMet-MTases are enzymes that use S-adenosyl-L-methionine (SAM or AdoMet) as a substrate for methyltransfer, creating the product S-adenosyl-L-homocysteine (AdoHcy). There are at least five structurally distinct families of AdoMet-MTases, class I being the largest and most diverse. Within this class enzymes can be classified by different substrate specificities (small molecules, lipids, nucleic acids, etc.) and different target atoms for methylation (nitrogen, oxygen, carbon, sulfur, etc.).
Pssm-ID: 100107 [Multi-domain] Cd Length: 107 Bit Score: 39.34 E-value: 2.85e-04
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options