Early set domain associated with the catalytic domain of sugar utilizing enzymes at either the ...
39-114
3.37e-06
Early set domain associated with the catalytic domain of sugar utilizing enzymes at either the N or C terminus; The E or "early" set domains of sugar utilizing enzymes are associated with different types of catalytic domains at either the N-terminal or C-terminal end. These domains may be related to the immunoglobulin and/or fibronectin type III superfamilies. Members of this family include alpha amylase, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase. A subset of these members were recently identified as members of the CBM48 (Carbohydrate Binding Module 48) family. Members of the CBM48 family include pullulanase, maltooligosyl trehalose synthase, starch branching enzyme, glycogen branching enzyme, glycogen debranching enzyme, isoamylase, and the beta subunit of AMP-activated protein kinase.
The actual alignment was detected with superfamily member cd02853:
Pssm-ID: 475140 [Multi-domain] Cd Length: 84 Bit Score: 44.82 E-value: 3.37e-06
N-terminal Early set domain associated with the catalytic domain of putative esterases; E or ...
45-128
5.38e-25
N-terminal Early set domain associated with the catalytic domain of putative esterases; E or "early" set domains are associated with the catalytic domain of esterase at the N-terminal end. Esterases catalyze the hydrolysis of organic esters to release an alcohol or thiol and acid. The term esterase can be applied to enzymes that hydrolyze carboxylate, phosphate and sulphate esters, but is more often restricted to the first class of substrate. The N-terminal domain of esterase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others.
Pssm-ID: 199894 [Multi-domain] Cd Length: 83 Bit Score: 97.25 E-value: 5.38e-25
Putative esterase; This family contains Esterase D. However it is not clear if all members of ...
149-378
1.93e-16
Putative esterase; This family contains Esterase D. However it is not clear if all members of the family have the same function. This family is related to the pfam00135 family.
Pssm-ID: 395613 [Multi-domain] Cd Length: 246 Bit Score: 78.27 E-value: 1.93e-16
N-terminal Early set domain associated with the catalytic domain of Maltooligosyl trehalose ...
39-114
3.37e-06
N-terminal Early set domain associated with the catalytic domain of Maltooligosyl trehalose trehalohydrolase (also called Glycosyltrehalose trehalohydrolase) and similar proteins; E or "early" set domains are associated with the catalytic domain of Maltooligosyl trehalose trehalohydrolase (MTHase) and similar proteins at the N-terminal end. This subfamily also includes bacterial alpha amylases and 1,4-alpha-glucan branching enzymes which are highly similar to MTHase. Maltooligosyl trehalose synthase (MTSase) and MTHase work together to produce trehalose. MTSase is responsible for converting the alpha-1,4-glucosidic linkage to an alpha,alpha-1,1-glucosidic linkage at the reducing end of the maltooligosaccharide through an intramolecular transglucosylation reaction, while MTHase hydrolyzes the penultimate alpha-1,4 linkage of the reducing end, resulting in the release of trehalose. The N-terminal domain of MTHase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others.
Pssm-ID: 199883 [Multi-domain] Cd Length: 84 Bit Score: 44.82 E-value: 3.37e-06
Carbohydrate-binding module 48 (Isoamylase N-terminal domain); This domain is found in a range ...
41-101
3.41e-05
Carbohydrate-binding module 48 (Isoamylase N-terminal domain); This domain is found in a range of enzymes that act on branched substrates - isoamylase, pullulanase and branching enzyme. This family also contains the beta subunit of 5' AMP activated kinase.
Pssm-ID: 427056 [Multi-domain] Cd Length: 80 Bit Score: 41.87 E-value: 3.41e-05
N-terminal Early set domain associated with the catalytic domain of putative esterases; E or ...
45-128
5.38e-25
N-terminal Early set domain associated with the catalytic domain of putative esterases; E or "early" set domains are associated with the catalytic domain of esterase at the N-terminal end. Esterases catalyze the hydrolysis of organic esters to release an alcohol or thiol and acid. The term esterase can be applied to enzymes that hydrolyze carboxylate, phosphate and sulphate esters, but is more often restricted to the first class of substrate. The N-terminal domain of esterase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others.
Pssm-ID: 199894 [Multi-domain] Cd Length: 83 Bit Score: 97.25 E-value: 5.38e-25
Putative esterase; This family contains Esterase D. However it is not clear if all members of ...
149-378
1.93e-16
Putative esterase; This family contains Esterase D. However it is not clear if all members of the family have the same function. This family is related to the pfam00135 family.
Pssm-ID: 395613 [Multi-domain] Cd Length: 246 Bit Score: 78.27 E-value: 1.93e-16
N-terminal Early set domain associated with the catalytic domain of esterase; E or "early" set ...
46-113
1.26e-12
N-terminal Early set domain associated with the catalytic domain of esterase; E or "early" set domains are associated with the catalytic domain of esterase at the N-terminal end. Esterases catalyze the hydrolysis of organic esters to release an alcohol or thiol and acid. The term esterase can be applied to enzymes that hydrolyze carboxylate, phosphate and sulphate esters, but is more often restricted to the first class of substrate. The N-terminal domain of esterase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others.
Pssm-ID: 199888 [Multi-domain] Cd Length: 78 Bit Score: 62.60 E-value: 1.26e-12
N-terminal Early set domain associated with the catalytic domain of Maltooligosyl trehalose ...
39-114
3.37e-06
N-terminal Early set domain associated with the catalytic domain of Maltooligosyl trehalose trehalohydrolase (also called Glycosyltrehalose trehalohydrolase) and similar proteins; E or "early" set domains are associated with the catalytic domain of Maltooligosyl trehalose trehalohydrolase (MTHase) and similar proteins at the N-terminal end. This subfamily also includes bacterial alpha amylases and 1,4-alpha-glucan branching enzymes which are highly similar to MTHase. Maltooligosyl trehalose synthase (MTSase) and MTHase work together to produce trehalose. MTSase is responsible for converting the alpha-1,4-glucosidic linkage to an alpha,alpha-1,1-glucosidic linkage at the reducing end of the maltooligosaccharide through an intramolecular transglucosylation reaction, while MTHase hydrolyzes the penultimate alpha-1,4 linkage of the reducing end, resulting in the release of trehalose. The N-terminal domain of MTHase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase, among others.
Pssm-ID: 199883 [Multi-domain] Cd Length: 84 Bit Score: 44.82 E-value: 3.37e-06
Carbohydrate-binding module 48 (Isoamylase N-terminal domain); This domain is found in a range ...
41-101
3.41e-05
Carbohydrate-binding module 48 (Isoamylase N-terminal domain); This domain is found in a range of enzymes that act on branched substrates - isoamylase, pullulanase and branching enzyme. This family also contains the beta subunit of 5' AMP activated kinase.
Pssm-ID: 427056 [Multi-domain] Cd Length: 80 Bit Score: 41.87 E-value: 3.41e-05
Early set domain associated with the catalytic domain of pullulanase (also called dextrinase ...
44-108
6.83e-05
Early set domain associated with the catalytic domain of pullulanase (also called dextrinase and alpha-dextrin endo-1,6-alpha glucosidase); E or "early" set domains are associated with the catalytic domain of pullulanase at either the N-terminal or C-terminal end, and in a few instances at both ends. Pullulanase is an enzyme with activity similar to that of isoamylase; it cleaves 1,6-alpha-glucosidic linkages in pullulan, amylopectin, and glycogen, and in alpha-and beta-amylase limit-dextrins of amylopectin and glycogen. The E set domain of pullulanase may be related to the immunoglobulin and/or fibronectin type III superfamilies. These domains are associated with different types of catalytic domains at either the N-terminal or C-terminal end and may be involved in homodimeric/tetrameric/dodecameric interactions. Members of this family include members of the alpha amylase family, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase. This domain is also a member of the CBM48 (Carbohydrate Binding Module 48) family whose members include maltooligosyl trehalose synthase, starch branching enzyme, glycogen branching enzyme, glycogen debranching enzyme, isoamylase, and the beta subunit of AMP-activated protein kinase.
Pssm-ID: 199890 [Multi-domain] Cd Length: 97 Bit Score: 41.37 E-value: 6.83e-05
Early set domain associated with the catalytic domain of sugar utilizing enzymes at either the ...
46-122
1.89e-04
Early set domain associated with the catalytic domain of sugar utilizing enzymes at either the N or C terminus; The E or "early" set domains of sugar utilizing enzymes are associated with different types of catalytic domains at either the N-terminal or C-terminal end. These domains may be related to the immunoglobulin and/or fibronectin type III superfamilies. Members of this family include alpha amylase, sialidase, galactose oxidase, cellulase, cellulose, hyaluronate lyase, chitobiase, and chitinase. A subset of these members were recently identified as members of the CBM48 (Carbohydrate Binding Module 48) family. Members of the CBM48 family include pullulanase, maltooligosyl trehalose synthase, starch branching enzyme, glycogen branching enzyme, glycogen debranching enzyme, isoamylase, and the beta subunit of AMP-activated protein kinase.
Pssm-ID: 199878 [Multi-domain] Cd Length: 82 Bit Score: 39.83 E-value: 1.89e-04
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options