nucleoside/nucleotide kinase family protein may catalyze the reversible phosphate group transfer from nucleoside triphosphates to nucleosides/nucleotides, nucleoside monophosphates, or sugars
Nucleoside/nucleotide kinase (NK) is a protein superfamily consisting of multiple families of ...
20-216
2.60e-56
Nucleoside/nucleotide kinase (NK) is a protein superfamily consisting of multiple families of enzymes that share structural similarity and are functionally related to the catalysis of the reversible phosphate group transfer from nucleoside triphosphates to nucleosides/nucleotides, nucleoside monophosphates, or sugars. Members of this family play a wide variety of essential roles in nucleotide metabolism, the biosynthesis of coenzymes and aromatic compounds, as well as the metabolism of sugar and sulfate.
The actual alignment was detected with superfamily member PRK09270:
Pssm-ID: 450170 Cd Length: 229 Bit Score: 178.59 E-value: 2.60e-56
pantothenate kinase, bacterial type; Shown to be a homodimer in E. coli. This enzyme catalyzes ...
32-206
1.86e-16
pantothenate kinase, bacterial type; Shown to be a homodimer in E. coli. This enzyme catalyzes the rate-limiting step in the biosynthesis of coenzyme A. It is very well conserved from E. coli to B. subtilis, but differs considerably from known eukaryotic forms, described in a separate model. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A]
Pssm-ID: 273134 Cd Length: 290 Bit Score: 76.19 E-value: 1.86e-16
Pantothenate kinase (PanK) catalyzes the phosphorylation of pantothenic acid to form 4 ...
32-180
3.52e-14
Pantothenate kinase (PanK) catalyzes the phosphorylation of pantothenic acid to form 4'-phosphopantothenic, which is the first of five steps in coenzyme A (CoA) biosynthetic pathway. The reaction carried out by this enzyme is a key regulatory point in CoA biosynthesis.
Pssm-ID: 238983 Cd Length: 220 Bit Score: 68.49 E-value: 3.52e-14
pantothenate kinase, bacterial type; Shown to be a homodimer in E. coli. This enzyme catalyzes ...
32-206
1.86e-16
pantothenate kinase, bacterial type; Shown to be a homodimer in E. coli. This enzyme catalyzes the rate-limiting step in the biosynthesis of coenzyme A. It is very well conserved from E. coli to B. subtilis, but differs considerably from known eukaryotic forms, described in a separate model. [Biosynthesis of cofactors, prosthetic groups, and carriers, Pantothenate and coenzyme A]
Pssm-ID: 273134 Cd Length: 290 Bit Score: 76.19 E-value: 1.86e-16
Pantothenate kinase (PanK) catalyzes the phosphorylation of pantothenic acid to form 4 ...
32-180
3.52e-14
Pantothenate kinase (PanK) catalyzes the phosphorylation of pantothenic acid to form 4'-phosphopantothenic, which is the first of five steps in coenzyme A (CoA) biosynthetic pathway. The reaction carried out by this enzyme is a key regulatory point in CoA biosynthesis.
Pssm-ID: 238983 Cd Length: 220 Bit Score: 68.49 E-value: 3.52e-14
Uridine monophosphate kinase (UMPK, EC 2.7.1.48), also known as uridine kinase or ...
114-210
3.06e-04
Uridine monophosphate kinase (UMPK, EC 2.7.1.48), also known as uridine kinase or uridine-cytidine kinase (UCK), catalyzes the reversible phosphoryl transfer from ATP to uridine or cytidine to yield UMP or CMP. In the primidine nucleotide-salvage pathway, this enzyme combined with nucleoside diphosphate kinases further phosphorylates UMP and CMP to form UTP and CTP. This kinase also catalyzes the phosphorylation of several cytotoxic ribonucleoside analogs such as 5-flurrouridine and cyclopentenyl-cytidine.
Pssm-ID: 238981 [Multi-domain] Cd Length: 198 Bit Score: 40.23 E-value: 3.06e-04
Nicotinamide riboside kinase (NRK) is an enzyme involved in the metabolism of nicotinamide ...
119-178
8.21e-03
Nicotinamide riboside kinase (NRK) is an enzyme involved in the metabolism of nicotinamide adenine dinucleotide (NAD+). This enzyme catalyzes the phosphorylation of nicotinamide riboside (NR) to form nicotinamide mononucleotide (NMN). It defines the NR salvage pathway of NAD+ biosynthesis in addition to the pathways through nicotinic acid mononucleotide (NaMN). This enzyme can also phosphorylate the anticancer drug tiazofurin, which is an analog of nicotinamide riboside.
Pssm-ID: 238982 [Multi-domain] Cd Length: 187 Bit Score: 36.15 E-value: 8.21e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options