glutamyl-tRNA reductase; This enzyme, together with glutamate-1-semialdehyde-2,1-aminomutase ...
3-418
0e+00
glutamyl-tRNA reductase; This enzyme, together with glutamate-1-semialdehyde-2,1-aminomutase (TIGR00713), leads to the production of delta-amino-levulinic acid from Glu-tRNA. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin]
Pssm-ID: 273407 [Multi-domain] Cd Length: 417 Bit Score: 520.79 E-value: 0e+00
NADP-binding domain of glutamyl-tRNA reductase; Glutamyl-tRNA reductase catalyzes the ...
3-318
7.23e-121
NADP-binding domain of glutamyl-tRNA reductase; Glutamyl-tRNA reductase catalyzes the conversion of glutamyl-tRNA to glutamate-1-semialdehyde, initiating the synthesis of tetrapyrrole. Whereas tRNAs are generally associated with peptide bond formation in protein translation, here the tRNA activates glutamate in the initiation of tetrapyrrole biosynthesis in archaea, plants and many bacteria. In the first step, activated glutamate is reduced to glutamate-1-semi-aldehyde via the NADPH dependent glutamyl-tRNA reductase. Glutamyl-tRNA reductase forms a V-shaped dimer. Each monomer has 3 domains: an N-terminal catalytic domain, a classic nucleotide binding domain, and a C-terminal dimerization domain. Although the representative structure 1GPJ lacks a bound NADPH, a theoretical binding pocket has been described. (PMID 11172694). Amino acid dehydrogenase (DH)-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts.
Pssm-ID: 133452 [Multi-domain] Cd Length: 311 Bit Score: 353.49 E-value: 7.23e-121
glutamyl-tRNA reductase; This enzyme, together with glutamate-1-semialdehyde-2,1-aminomutase ...
3-418
0e+00
glutamyl-tRNA reductase; This enzyme, together with glutamate-1-semialdehyde-2,1-aminomutase (TIGR00713), leads to the production of delta-amino-levulinic acid from Glu-tRNA. [Biosynthesis of cofactors, prosthetic groups, and carriers, Heme, porphyrin, and cobalamin]
Pssm-ID: 273407 [Multi-domain] Cd Length: 417 Bit Score: 520.79 E-value: 0e+00
NADP-binding domain of glutamyl-tRNA reductase; Glutamyl-tRNA reductase catalyzes the ...
3-318
7.23e-121
NADP-binding domain of glutamyl-tRNA reductase; Glutamyl-tRNA reductase catalyzes the conversion of glutamyl-tRNA to glutamate-1-semialdehyde, initiating the synthesis of tetrapyrrole. Whereas tRNAs are generally associated with peptide bond formation in protein translation, here the tRNA activates glutamate in the initiation of tetrapyrrole biosynthesis in archaea, plants and many bacteria. In the first step, activated glutamate is reduced to glutamate-1-semi-aldehyde via the NADPH dependent glutamyl-tRNA reductase. Glutamyl-tRNA reductase forms a V-shaped dimer. Each monomer has 3 domains: an N-terminal catalytic domain, a classic nucleotide binding domain, and a C-terminal dimerization domain. Although the representative structure 1GPJ lacks a bound NADPH, a theoretical binding pocket has been described. (PMID 11172694). Amino acid dehydrogenase (DH)-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts.
Pssm-ID: 133452 [Multi-domain] Cd Length: 311 Bit Score: 353.49 E-value: 7.23e-121
Shikimate / quinate 5-dehydrogenase; This family contains both shikimate and quinate ...
172-306
3.61e-62
Shikimate / quinate 5-dehydrogenase; This family contains both shikimate and quinate dehydrogenases. Shikimate 5-dehydrogenase catalyzes the conversion of shikimate to 5-dehydroshikimate. This reaction is part of the shikimate pathway which is involved in the biosynthesis of aromatic amino acids. Quinate 5-dehydrogenase catalyzes the conversion of quinate to 5-dehydroquinate. This reaction is part of the quinate pathway where quinic acid is exploited as a source of carbon in prokaryotes and microbial eukaryotes. Both the shikimate and quinate pathways share two common pathway metabolites 3-dehydroquinate and dehydroshikimate.
Pssm-ID: 460229 [Multi-domain] Cd Length: 136 Bit Score: 197.03 E-value: 3.61e-62
Shikimate 5-dehydrogenase [Amino acid transport and metabolism]; Shikimate 5-dehydrogenase is ...
184-262
3.46e-13
Shikimate 5-dehydrogenase [Amino acid transport and metabolism]; Shikimate 5-dehydrogenase is part of the Pathway/BioSystem: Aromatic amino acid biosynthesis
Pssm-ID: 439939 [Multi-domain] Cd Length: 270 Bit Score: 69.40 E-value: 3.46e-13
NAD(P) binding domain of Shikimate dehydrogenase; Shikimate dehydrogenase (DH) is an amino ...
184-250
7.69e-12
NAD(P) binding domain of Shikimate dehydrogenase; Shikimate dehydrogenase (DH) is an amino acid DH family member. Shikimate pathway links metabolism of carbohydrates to de novo biosynthesis of aromatic amino acids, quinones and folate. It is essential in plants, bacteria, and fungi but absent in mammals, thus making enzymes involved in this pathway ideal targets for broad spectrum antibiotics and herbicides. Shikimate DH catalyzes the reduction of 3-hydroshikimate to shikimate using the cofactor NADH. Amino acid DH-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DHs, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts.
Pssm-ID: 133443 [Multi-domain] Cd Length: 155 Bit Score: 63.06 E-value: 7.69e-12
Ornithine cyclodeaminase/archaeal alanine dehydrogenase, mu-crystallin family [Amino acid ...
172-262
1.30e-09
Ornithine cyclodeaminase/archaeal alanine dehydrogenase, mu-crystallin family [Amino acid transport and metabolism]; Ornithine cyclodeaminase/archaeal alanine dehydrogenase, mu-crystallin family is part of the Pathway/BioSystem: Proline biosynthesis
Pssm-ID: 441972 [Multi-domain] Cd Length: 322 Bit Score: 59.00 E-value: 1.30e-09
Saccharopine dehydrogenase NADP binding domain; This family contains the NADP binding domain ...
185-284
1.53e-05
Saccharopine dehydrogenase NADP binding domain; This family contains the NADP binding domain of saccharopine dehydrogenase. In some organizms this enzyme is found as a bifunctional polypeptide with lysine ketoglutarate reductase. The saccharopine dehydrogenase can also function as a saccharopine reductase.
Pssm-ID: 397480 [Multi-domain] Cd Length: 120 Bit Score: 44.12 E-value: 1.53e-05
NADP binding domain of methylene tetrahydromethanopterin dehydrogenase; Methylene ...
173-289
1.02e-03
NADP binding domain of methylene tetrahydromethanopterin dehydrogenase; Methylene Tetrahydromethanopterin Dehydrogenase (H4MPT DH) NADP binding domain. NADP-dependent H4MPT DH catalyzes the dehydrogenation of methylene- H4MPT and methylene-tetrahydrofolate (H4F) with NADP+ as cofactor. H4F and H4MPT are both cofactors that carry the one-carbon units between the formyl and methyl oxidation level. H4F and H4MPT are structurally analogous to each other with respect to the pterin moiety, but each has distinct side chain. H4MPT is present only in anaerobic methanogenic archaea and aerobic methylotrophic proteobacteria. H4MPT seems to have evolved independently from H4F and functions as a distinct carrier in C1 metabolism. Amino acid DH-like NAD(P)-binding domains are members of the Rossmann fold superfamily and include glutamate, leucine, and phenylalanine DHs, methylene tetrahydrofolate DH, methylene-tetrahydromethanopterin DH, methylene-tetrahydropholate DH/cyclohydrolase, Shikimate DH-like proteins, malate oxidoreductases, and glutamyl tRNA reductase. Amino acid DHs catalyze the deamination of amino acids to keto acids with NAD(P)+ as a cofactor. The NAD(P)-binding Rossmann fold superfamily includes a wide variety of protein families including NAD(P)- binding domains of alcohol DHs, tyrosine-dependent oxidoreductases, glyceraldehyde-3-phosphate DH, lactate/malate DHs, formate/glycerate DHs, siroheme synthases, 6-phosphogluconate DH, amino acid DHs, repressor rex, NAD-binding potassium channel domain, CoA-binding, and ornithine cyclodeaminase-like domains. These domains have an alpha-beta-alpha configuration. NAD binding involves numerous hydrogen and van der Waals contacts.
Pssm-ID: 133446 [Multi-domain] Cd Length: 194 Bit Score: 40.07 E-value: 1.02e-03
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze ...
173-280
1.21e-03
Putative D-isomer specific 2-hydroxyacid dehydrogenases; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric.
Pssm-ID: 240643 [Multi-domain] Cd Length: 300 Bit Score: 40.65 E-value: 1.21e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options