cys-based protein-tyrosine phosphatase (PTP) family protein may be a PTP or a dual-specificity phosphatase (DUSP or DSP), and may catalyze the dephosphorylation of target phosphoproteins at tyrosine or tyrosine and serine/threonine residues, respectively
Protein tyrosine phosphatase-like domains of phytases and similar domains; This subfamily ...
93-352
4.04e-79
Protein tyrosine phosphatase-like domains of phytases and similar domains; This subfamily contains the tandem protein tyrosine phosphatase (PTP)-like domains of protein tyrosine phosphatase-like phytases (PTPLPs) and similar domains including the PTP domain of Pseudomonas syringae tyrosine-protein phosphatase hopPtoD2. PTPLPs, also known as cysteine phytases, are one of four known classes of phytases, enzymes that degrade phytate (inositol hexakisphosphate [InsP(6)]) to less-phosphorylated myo-inositol derivatives. Phytate is the most abundant cellular inositol phosphate and plays important roles in a broad scope of cellular processes, including DNA repair, RNA processing and export, development, apoptosis, and pathogenicity. PTPLPs adopt a PTP fold, including the active-site signature sequence (CX5R(S/T)) and utilize a classical PTP reaction mechanism. However, these enzymes display no catalytic activity against classical PTP substrates due to several unique structural features that confer specificity for myo-inositol polyphosphates.
Pssm-ID: 350345 Cd Length: 278 Bit Score: 243.44 E-value: 4.04e-79
Inositol hexakisphosphate; Inositol hexakisphosphate, often called phytate, is found in ...
145-285
4.76e-20
Inositol hexakisphosphate; Inositol hexakisphosphate, often called phytate, is found in abundance in seeds and acting as an inorganic phosphate reservoir. Phytases are phosphatases that hydrolyze phytate to less-phosphorylated myo-inositol derivatives and inorganic phosphate. The active-site sequence (HCXXGXGR) of the phytase identified from the gut micro-organizm Selenomonas ruminantium forms a loop (P loop) at the base of a substrate binding pocket that is characteriztic of protein tyrosine phosphatases (PTPs). The depth of this pocket is an important determinant of the substrate specificity of PTPs. In humans this enzyme is thought to aid bone mineralization and salvage the inositol moiety prior to apoptosis.
Pssm-ID: 464208 [Multi-domain] Cd Length: 157 Bit Score: 85.44 E-value: 4.76e-20
Protein tyrosine phosphatase-like domains of phytases and similar domains; This subfamily ...
93-352
4.04e-79
Protein tyrosine phosphatase-like domains of phytases and similar domains; This subfamily contains the tandem protein tyrosine phosphatase (PTP)-like domains of protein tyrosine phosphatase-like phytases (PTPLPs) and similar domains including the PTP domain of Pseudomonas syringae tyrosine-protein phosphatase hopPtoD2. PTPLPs, also known as cysteine phytases, are one of four known classes of phytases, enzymes that degrade phytate (inositol hexakisphosphate [InsP(6)]) to less-phosphorylated myo-inositol derivatives. Phytate is the most abundant cellular inositol phosphate and plays important roles in a broad scope of cellular processes, including DNA repair, RNA processing and export, development, apoptosis, and pathogenicity. PTPLPs adopt a PTP fold, including the active-site signature sequence (CX5R(S/T)) and utilize a classical PTP reaction mechanism. However, these enzymes display no catalytic activity against classical PTP substrates due to several unique structural features that confer specificity for myo-inositol polyphosphates.
Pssm-ID: 350345 Cd Length: 278 Bit Score: 243.44 E-value: 4.04e-79
Inositol hexakisphosphate; Inositol hexakisphosphate, often called phytate, is found in ...
145-285
4.76e-20
Inositol hexakisphosphate; Inositol hexakisphosphate, often called phytate, is found in abundance in seeds and acting as an inorganic phosphate reservoir. Phytases are phosphatases that hydrolyze phytate to less-phosphorylated myo-inositol derivatives and inorganic phosphate. The active-site sequence (HCXXGXGR) of the phytase identified from the gut micro-organizm Selenomonas ruminantium forms a loop (P loop) at the base of a substrate binding pocket that is characteriztic of protein tyrosine phosphatases (PTPs). The depth of this pocket is an important determinant of the substrate specificity of PTPs. In humans this enzyme is thought to aid bone mineralization and salvage the inositol moiety prior to apoptosis.
Pssm-ID: 464208 [Multi-domain] Cd Length: 157 Bit Score: 85.44 E-value: 4.76e-20
cys-based protein tyrosine phosphatase and dual-specificity phosphatase superfamily; This ...
236-310
1.83e-08
cys-based protein tyrosine phosphatase and dual-specificity phosphatase superfamily; This superfamily is composed of cys-based phosphatases, which includes classical protein tyrosine phosphatases (PTPs) as well as dual-specificity phosphatases (DUSPs or DSPs). They are characterized by a CxxxxxR conserved catalytic loop (where C is the catalytic cysteine, x is any amino acid, and R is an arginine). PTPs are part of the tyrosine phosphorylation/dephosphorylation regulatory mechanism, and are important in the response of the cells to physiologic and pathologic changes in their environment. DUSPs show more substrate diversity (including RNA and lipids) and include pTyr, pSer, and pThr phosphatases.
Pssm-ID: 350344 [Multi-domain] Cd Length: 113 Bit Score: 51.97 E-value: 1.83e-08
dual specificity phosphatase 23; Dual specificity phosphatase 23 (DUSP23), also known as ...
227-305
1.21e-04
dual specificity phosphatase 23; Dual specificity phosphatase 23 (DUSP23), also known as VH1-like phosphatase Z (VHZ) or low molecular mass dual specificity phosphatase 3 (LDP-3), functions as a protein-serine/threonine phosphatase (EC 3.1.3.16) and a protein-tyrosine-phosphatase (EC 3.1.3.48). It deactivates its MAPK substrates by dephosphorylating the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif residing in their activation sites. DUSP23 is an atypical DUSP; it contains the catalytic dual specificity phosphatase domain but lacks the N-terminal Cdc25/rhodanese-like domain that is present in typical DUSPs or MKPs. It is able to enhance activation of JNK and p38 MAPK, and has been shown to dephosphorylate p44-ERK1 (MAPK3) in vitro. It has been associated with cell growth and human primary cancers. It has also been identified as a cell-cell adhesion regulatory protein; it promotes the dephosphorylation of beta-catenin at Tyr 142 and enhances the interaction between alpha- and beta-catenin.
Pssm-ID: 350354 [Multi-domain] Cd Length: 142 Bit Score: 41.49 E-value: 1.21e-04
catalytic domain of tyrosine-protein phosphatase non-receptor type 20 and type 13; ...
238-301
2.04e-03
catalytic domain of tyrosine-protein phosphatase non-receptor type 20 and type 13; Tyrosine-protein phosphatase non-receptor type 20 (PTPN20) and type 13 (PTPN13, also known as PTPL1) belong to the family of classical tyrosine-specific protein tyrosine phosphatases (PTPs). PTPs (EC 3.1.3.48) catalyze the dephosphorylation of phosphotyrosine peptides. Human PTPN20 is a widely expressed phosphatase with a dynamic subcellular distribution that is targeted to sites of actin polymerization. Human PTPN13 is an important regulator of tumor aggressiveness.
Pssm-ID: 350386 [Multi-domain] Cd Length: 207 Bit Score: 38.89 E-value: 2.04e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options