phosphate/phosphite/phosphonate ABC transporter substrate-binding protein functions as the initial receptor in the ABC transport of phosphate, phosphite, and/or phosphonate
phosphonate ABC transporter, periplasmic phosphonate binding protein; This model is a subset ...
1-293
1.55e-146
phosphonate ABC transporter, periplasmic phosphonate binding protein; This model is a subset of the broader subfamily of phosphate/phosphonate binding protein ABC transporter components, TIGR01098. In this model all members of the seed have support from genomic context for association with pathways for the metabolims of phosphonates, particularly the C-P lyase system, GenProp0232. This model includes the characterized phnD gene from E. coli. Note that this model does not identify all phnD-subfamily genes with evident phosphonate context, but all sequences above the trusted context may be inferred to bind phosphonate compounds even in the absence of such context. Furthermore, there is ample evidence to suggest that many other members of the TIGR01098 subfamily have a different primary function.
:
Pssm-ID: 132472 [Multi-domain] Cd Length: 288 Bit Score: 412.90 E-value: 1.55e-146
phosphonate ABC transporter, periplasmic phosphonate binding protein; This model is a subset ...
1-293
1.55e-146
phosphonate ABC transporter, periplasmic phosphonate binding protein; This model is a subset of the broader subfamily of phosphate/phosphonate binding protein ABC transporter components, TIGR01098. In this model all members of the seed have support from genomic context for association with pathways for the metabolims of phosphonates, particularly the C-P lyase system, GenProp0232. This model includes the characterized phnD gene from E. coli. Note that this model does not identify all phnD-subfamily genes with evident phosphonate context, but all sequences above the trusted context may be inferred to bind phosphonate compounds even in the absence of such context. Furthermore, there is ample evidence to suggest that many other members of the TIGR01098 subfamily have a different primary function.
Pssm-ID: 132472 [Multi-domain] Cd Length: 288 Bit Score: 412.90 E-value: 1.55e-146
Substrate binding domain of phosphonate uptake system-like, a member of the type 2 ...
28-285
4.53e-102
Substrate binding domain of phosphonate uptake system-like, a member of the type 2 periplasmic-binding fold superfamily; This family includes alkylphosphonate binding domain PhnD. These domains are found in PhnD-like proteins that are predicted to function as initial receptors in hypophosphite, phosphonate, or phosphate ABC transport in archaea and eubacteria. PhnD is the periplasmic binding component of an ABC-type phosphonate uptake system (PhnCDE) that recognizes and binds phosphonate. PhnD belongs to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. The PBP2 have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap.
Pssm-ID: 270232 [Multi-domain] Cd Length: 253 Bit Score: 298.79 E-value: 4.53e-102
ABC transporter, phosphonate, periplasmic substrate-binding protein; This is a family of ...
35-281
1.55e-89
ABC transporter, phosphonate, periplasmic substrate-binding protein; This is a family of periplasmic proteins which are part of the transport system for alkylphosphonate uptake.
Pssm-ID: 432911 [Multi-domain] Cd Length: 243 Bit Score: 266.44 E-value: 1.55e-89
phosphonate ABC transporter, periplasmic phosphonate binding protein; This model is a subset ...
1-293
1.55e-146
phosphonate ABC transporter, periplasmic phosphonate binding protein; This model is a subset of the broader subfamily of phosphate/phosphonate binding protein ABC transporter components, TIGR01098. In this model all members of the seed have support from genomic context for association with pathways for the metabolims of phosphonates, particularly the C-P lyase system, GenProp0232. This model includes the characterized phnD gene from E. coli. Note that this model does not identify all phnD-subfamily genes with evident phosphonate context, but all sequences above the trusted context may be inferred to bind phosphonate compounds even in the absence of such context. Furthermore, there is ample evidence to suggest that many other members of the TIGR01098 subfamily have a different primary function.
Pssm-ID: 132472 [Multi-domain] Cd Length: 288 Bit Score: 412.90 E-value: 1.55e-146
Substrate binding domain of phosphonate uptake system-like, a member of the type 2 ...
28-285
4.53e-102
Substrate binding domain of phosphonate uptake system-like, a member of the type 2 periplasmic-binding fold superfamily; This family includes alkylphosphonate binding domain PhnD. These domains are found in PhnD-like proteins that are predicted to function as initial receptors in hypophosphite, phosphonate, or phosphate ABC transport in archaea and eubacteria. PhnD is the periplasmic binding component of an ABC-type phosphonate uptake system (PhnCDE) that recognizes and binds phosphonate. PhnD belongs to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. The PBP2 have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap.
Pssm-ID: 270232 [Multi-domain] Cd Length: 253 Bit Score: 298.79 E-value: 4.53e-102
ABC transporter, phosphonate, periplasmic substrate-binding protein; This is a family of ...
35-281
1.55e-89
ABC transporter, phosphonate, periplasmic substrate-binding protein; This is a family of periplasmic proteins which are part of the transport system for alkylphosphonate uptake.
Pssm-ID: 432911 [Multi-domain] Cd Length: 243 Bit Score: 266.44 E-value: 1.55e-89
phosphate/phosphite/phosphonate ABC transporter, periplasmic binding protein; Phosphonates are ...
4-255
1.43e-83
phosphate/phosphite/phosphonate ABC transporter, periplasmic binding protein; Phosphonates are a varied class of phosphorus-containing organic compound in which a direct C-P bond is found, rather than a C-O-P linkage of the phosphorus through an oxygen atom. They may be toxic but also may be used as sources of phosphorus and energy by various bacteria. Phosphonate utilization systems typically are encoded in 14 or more genes, including a three gene ABC transporter. This family includes the periplasmic binding protein component of ABC transporters for phosphonates as well as other, related binding components for closely related substances such as phosphate and phosphite. A number of members of this family are found in genomic contexts with components of selenium metabolic processes suggestive of a role in selenate or other selenium-compound transport. A subset of this model in which nearly all members exhibit genomic context with elements of phosphonate metabolism, particularly the C-P lyase system (GenProp0232) has been built (TIGR03431) as an equivalog. Nevertheless, there are members of this subfamily (TIGR01098) which show up sporadically on a phylogenetic tree that also show phosphonate context and are most likely competent to transport phosphonates. [Transport and binding proteins, Anions]
Pssm-ID: 273442 [Multi-domain] Cd Length: 254 Bit Score: 251.88 E-value: 1.43e-83
Substrate binding domain of uncharacterized ABC-type phosphonate-like transporter; contains ...
30-285
2.11e-55
Substrate binding domain of uncharacterized ABC-type phosphonate-like transporter; contains the type 2 periplasmic binding fold; This subfamily includes putative periplasmic binding component of an ABC transport system similar to alkylphosphonate binding domain PnhD. These domains are found in PnhD-like proteins that are predicted to function as initial receptors in hypophosphite, phosphonate, or phosphate ABC transport in archaea and eubacteria. They belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap.
Pssm-ID: 270290 [Multi-domain] Cd Length: 249 Bit Score: 179.82 E-value: 2.11e-55
Substrate binding domain of uncharacterized ABC-type phosphonate-like transporter; contains ...
30-285
4.36e-51
Substrate binding domain of uncharacterized ABC-type phosphonate-like transporter; contains the type 2 periplasmic binding fold; This subfamily includes putative periplasmic binding components of an ABC transport system similar to alkylphosphonate binding domain PnhD. These domains are found in PnhD-like proteins that are predicted to function as initial receptors in hypophosphite, phosphonate, or phosphate ABC transport in archaea and eubacteria. They belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap.
Pssm-ID: 270289 [Multi-domain] Cd Length: 253 Bit Score: 168.59 E-value: 4.36e-51
Substrate binding domain of ABC-type phosphonate uptake system; contains the type 2 ...
30-285
4.61e-51
Substrate binding domain of ABC-type phosphonate uptake system; contains the type 2 periplasmic binding fold; This subfamily includes the Escherichia coli PhnD (EcPhnD) which exhibits high affinity for the environmentally abundant 2-aminoethylphosphonate (2-AEP), a precursor in the biosynthesis of phosphonolipids, phosphonoproteins, and phosphonoglycans. The Escherichia coli phn operon encodes 14 genes involved in binding, uptake and metabolism of phosphonate, and is activated under phophophate-limiting conditions. PhnD belongs to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. The PBP2 have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. PhnD is the periplasmic binding component of an ABC-type phosphonate uptake system (PhnCDE) that recognizes and binds phosphonate.
Pssm-ID: 270293 [Multi-domain] Cd Length: 259 Bit Score: 168.80 E-value: 4.61e-51
Substrate binding domain of uncharacterized ABC-type phosphonate-like transporter; contains ...
30-285
9.17e-46
Substrate binding domain of uncharacterized ABC-type phosphonate-like transporter; contains the type 2 periplasmic binding fold; This subfamily includes putative periplasmic binding component of an ABC transport system similar to alkylphosphonate binding domain PnhD. These domains are found in PnhD-like proteins that are predicted to function as initial receptors in hypophosphite, phosphonate, or phosphate ABC transport in archaea and eubacteria. They belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap.
Pssm-ID: 270292 [Multi-domain] Cd Length: 250 Bit Score: 154.78 E-value: 9.17e-46
Substrate binding domain of uncharacterized ABC-type phosphonate-like transporter; contains ...
30-260
2.08e-37
Substrate binding domain of uncharacterized ABC-type phosphonate-like transporter; contains the type 2 periplasmic binding fold; This subfamily includes putative periplasmic binding component of an ABC transport system similar to alkylphosphonate binding domain PnhD. These domains are found in PnhD-like proteins that are predicted to function as initial receptors in hypophosphite, phosphonate, or phosphate ABC transport in archaea and eubacteria. They belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap.
Pssm-ID: 270291 [Multi-domain] Cd Length: 253 Bit Score: 133.37 E-value: 2.08e-37
ABC transporter, substrate-binding protein, aliphatic sulfonates family; Members of this ...
124-228
9.38e-04
ABC transporter, substrate-binding protein, aliphatic sulfonates family; Members of this family are substrate-binding periplasmic proteins of ABC transporters. This subfamily includes SsuA, a member of a transporter operon needed to obtain sulfur from aliphatic sulfonates. Related proteins outside the scope of this model include taurine (NH2-CH2-CH2-S03H) binding proteins, the probable sulfate ester binding protein AtsR, and the probable aromatic sulfonate binding protein AsfC. All these families make sulfur available when Cys and sulfate levels are low. Please note that phylogenetic analysis by neighbor-joining suggests that a number of sequences belonging to this family have been excluded because of scoring lower than taurine-binding proteins. [Transport and binding proteins, Other]
Pssm-ID: 130789 [Multi-domain] Cd Length: 288 Bit Score: 40.04 E-value: 9.38e-04
TRAP transporter solute receptor, TAXI family; This family is one of at least three major ...
125-260
1.72e-03
TRAP transporter solute receptor, TAXI family; This family is one of at least three major families of extracytoplasmic solute receptor (ESR) for TRAP (Tripartite ATP-independent Periplasmic Transporter) transporters. The others are the DctP (TIGR00787) and SmoM (pfam03480) families. These transporters are secondary (driven by an ion gradient) but composed of three polypeptides, although in some species the 4-TM and 12-TM integral membrane proteins are fused. Substrates for this transporter family are not fully characterized but, besides C4 dicarboxylates, may include mannitol and other compounds. [Transport and binding proteins, Unknown substrate]
Pssm-ID: 273982 [Multi-domain] Cd Length: 320 Bit Score: 39.24 E-value: 1.72e-03
Substrate binding domain of ABC-type nitrate/sulfonate/bicarbonate transporters, a member of ...
53-228
1.88e-03
Substrate binding domain of ABC-type nitrate/sulfonate/bicarbonate transporters, a member of the type 2 periplasmic binding fold superfamily; This family represents the periplasmic binding proteins involved in nitrate, alkanesulfonate, and bicarbonate transport. These domains are found in eubacterial perisplamic-binding proteins that serve as initial receptors in the ABC transport of bicarbonate, nitrate, taurine, or a wide range of aliphatic sulfonates. Other closest homologs involved in thiamine (vitamin B1) biosynthetic pathway and desulfurization (DszB) are also included in this family. After binding their ligand with high affinity, they interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. These binding proteins belong to the PBP2 superfamily of periplasmic binding proteins that differ in size and ligand specificity, but have similar tertiary structures consisting of two globular subdomains connected by a flexible hinge. They have been shown to bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap.
Pssm-ID: 270229 [Multi-domain] Cd Length: 212 Bit Score: 38.81 E-value: 1.88e-03
Type 2 periplasmic binding fold superfamily; This evolutionary model and hierarchy represent ...
45-238
8.01e-03
Type 2 periplasmic binding fold superfamily; This evolutionary model and hierarchy represent the ligand-binding domains found in solute binding proteins that serve as initial receptors in the transport, signal transduction and channel gating. The PBP2 proteins share the same architecture as periplasmic binding proteins type 1 (PBP1), but have a different topology. They are typically comprised of two globular subdomains connected by a flexible hinge and bind their ligand in the cleft between these domains in a manner resembling a Venus flytrap. The origin of PBP module can be traced across the distant phyla, including eukaryotes, archebacteria, and prokaryotes. The majority of PBP2 proteins are involved in the uptake of a variety of soluble substrates such as phosphate, sulfate, polysaccharides, lysine/arginine/ornithine, and histidine. After binding their specific ligand with high affinity, they can interact with a cognate membrane transport complex comprised of two integral membrane domains and two cytoplasmically located ATPase domains. This interaction triggers the ligand translocation across the cytoplasmic membrane energized by ATP hydrolysis. Besides transport proteins, the family includes ionotropic glutamate receptors and unorthodox sensor proteins involved in signal transduction. The substrate binding domain of the LysR transcriptional regulators and the oligopeptide-like transport systems also contain the type 2 periplasmic binding fold and thus they are significantly homologous to that of the PBP2; however, these two families are grouped into a separate hierarchy of the PBP2 superfamily due to the large number of protein sequences.
Pssm-ID: 270214 [Multi-domain] Cd Length: 196 Bit Score: 36.78 E-value: 8.01e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options