P-loop NTPase (nucleoside triphosphate hydrolase) family protein contains two conserved sequence signatures, the Walker A motif (the P-loop proper) and Walker B motif which bind, respectively, the beta and gamma phosphate moieties of the bound nucleotide (typically ATP or GTP), and a Mg(2+) cation
P-loop containing Nucleoside Triphosphate Hydrolases; Members of the P-loop NTPase domain ...
1-237
1.60e-118
P-loop containing Nucleoside Triphosphate Hydrolases; Members of the P-loop NTPase domain superfamily are characterized by a conserved nucleotide phosphate-binding motif, also referred to as the Walker A motif (GxxxxGK[S/T], where x is any residue), and the Walker B motif (hhhh[D/E], where h is a hydrophobic residue). The Walker A and B motifs bind the beta-gamma phosphate moiety of the bound nucleotide (typically ATP or GTP) and the Mg2+ cation, respectively. The P-loop NTPases are involved in diverse cellular functions, and they can be divided into two major structural classes: the KG (kinase-GTPase) class which includes Ras-like GTPases and its circularly permutated YlqF-like; and the ASCE (additional strand catalytic E) class which includes ATPase Binding Cassette (ABC), DExD/H-like helicases, 4Fe-4S iron sulfur cluster binding proteins of NifH family, RecA-like F1-ATPases, and ATPases Associated with a wide variety of Activities (AAA). Also included are a diverse set of nucleotide/nucleoside kinase families.
The actual alignment was detected with superfamily member PRK10037:
Pssm-ID: 476819 Cd Length: 250 Bit Score: 338.00 E-value: 1.60e-118
Cellulose biosynthesis protein BcsQ; This is a family of bacterial proteins involved in ...
1-234
4.68e-111
Cellulose biosynthesis protein BcsQ; This is a family of bacterial proteins involved in cellulose biosynthesis. (Roemling U. and Galperin M.Y. "Bacterial cellulose biosynthesis. Diversity of operons and subunits" (manuscript in preparation)). A second component of the extracellular matrix of the multicellular morphotype (rdar) of Salmonella typhimurium and Escherichia coli is cellulose. The family does contain a P-loop sequence motif suggesting a nucleotide binding function, but this has not been confirmed.
Pssm-ID: 429004 [Multi-domain] Cd Length: 234 Bit Score: 318.55 E-value: 4.68e-111
cellulose synthase operon protein YhjQ; Members of this family are the YhjQ protein, found ...
1-238
2.28e-78
cellulose synthase operon protein YhjQ; Members of this family are the YhjQ protein, found immediately upsteam of bacterial cellulose synthase (bcs) genes in a broad range of bacteria, including both copies of the bcs locus in Klebsiella pneumoniae. In several species it is seen clearly as part of the bcs operon. It is identified as a probable component of the bacterial cellulose metabolic process not only by gene location, but also by partial phylogenetic profiling, or Haft-Selengut algorithm (), based on a bacterial cellulose biosynthesis genome property profile. Cellulose plays an important role in biofilm formation and structural integrity in some bacteria. Mutants in yhjQ in Escherichia coli, show altered morphology an growth, but the function of YhjQ has not yet been determined. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides]
Pssm-ID: 274549 [Multi-domain] Cd Length: 246 Bit Score: 236.09 E-value: 2.28e-78
pilus assembly ATPase CpaE; This protein family consists of proteins similar to the cpaE ...
3-231
4.61e-14
pilus assembly ATPase CpaE; This protein family consists of proteins similar to the cpaE protein of the Caulobacter pilus assembly and the orf4 protein of Actinobacillus pilus formation gene cluster. The function of these proteins are unkown. The Caulobacter pilus assembly contains 7 genes: pilA, cpaA, cpaB, cpaC, cpaD, cpaE and cpaF. These genes are clustered together on chromosome.
Pssm-ID: 349765 [Multi-domain] Cd Length: 235 Bit Score: 69.23 E-value: 4.61e-14
Cellulose biosynthesis protein BcsQ; This is a family of bacterial proteins involved in ...
1-234
4.68e-111
Cellulose biosynthesis protein BcsQ; This is a family of bacterial proteins involved in cellulose biosynthesis. (Roemling U. and Galperin M.Y. "Bacterial cellulose biosynthesis. Diversity of operons and subunits" (manuscript in preparation)). A second component of the extracellular matrix of the multicellular morphotype (rdar) of Salmonella typhimurium and Escherichia coli is cellulose. The family does contain a P-loop sequence motif suggesting a nucleotide binding function, but this has not been confirmed.
Pssm-ID: 429004 [Multi-domain] Cd Length: 234 Bit Score: 318.55 E-value: 4.68e-111
cellulose synthase operon protein YhjQ; Members of this family are the YhjQ protein, found ...
1-238
2.28e-78
cellulose synthase operon protein YhjQ; Members of this family are the YhjQ protein, found immediately upsteam of bacterial cellulose synthase (bcs) genes in a broad range of bacteria, including both copies of the bcs locus in Klebsiella pneumoniae. In several species it is seen clearly as part of the bcs operon. It is identified as a probable component of the bacterial cellulose metabolic process not only by gene location, but also by partial phylogenetic profiling, or Haft-Selengut algorithm (), based on a bacterial cellulose biosynthesis genome property profile. Cellulose plays an important role in biofilm formation and structural integrity in some bacteria. Mutants in yhjQ in Escherichia coli, show altered morphology an growth, but the function of YhjQ has not yet been determined. [Cell envelope, Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides]
Pssm-ID: 274549 [Multi-domain] Cd Length: 246 Bit Score: 236.09 E-value: 2.28e-78
pilus assembly ATPase CpaE; This protein family consists of proteins similar to the cpaE ...
3-231
4.61e-14
pilus assembly ATPase CpaE; This protein family consists of proteins similar to the cpaE protein of the Caulobacter pilus assembly and the orf4 protein of Actinobacillus pilus formation gene cluster. The function of these proteins are unkown. The Caulobacter pilus assembly contains 7 genes: pilA, cpaA, cpaB, cpaC, cpaD, cpaE and cpaF. These genes are clustered together on chromosome.
Pssm-ID: 349765 [Multi-domain] Cd Length: 235 Bit Score: 69.23 E-value: 4.61e-14
septum site-determining protein MinD; Septum site-determining protein MinD is part of the ...
10-148
1.02e-10
septum site-determining protein MinD; Septum site-determining protein MinD is part of the operon MinCDE that determines the site of the formation of a septum at mid-cell, an important part of bacterial cell division. MinC is a nonspecific inhibitor of the septum protein FtsZ. MinE is the supressor of MinC. MinD plays a pivotal role, selecting the mid-cell over other sites through the activation and regulation of MinC and MinE. MinD is a membrane-associated ATPase, related to nitrogenase iron protein.
Pssm-ID: 349756 [Multi-domain] Cd Length: 236 Bit Score: 59.91 E-value: 1.02e-10
MinD-like ATPase FlhG; FlhG is a member of the SIMIBI superfamily. FlhG (also known as YlxH) ...
11-223
5.94e-08
MinD-like ATPase FlhG; FlhG is a member of the SIMIBI superfamily. FlhG (also known as YlxH) is a major determinant for a variety of flagellation patterns. It effects location and number of bacterial flagella during C-ring assembly.
Pssm-ID: 349758 [Multi-domain] Cd Length: 230 Bit Score: 51.80 E-value: 5.94e-08
helicase/secretion neighborhood CpaE-like protein; Members of this protein family belong to ...
2-148
3.91e-07
helicase/secretion neighborhood CpaE-like protein; Members of this protein family belong to the MinD/ParA family of P-loop NTPases, and in particular show homology to the CpaE family of pilus assembly proteins (see ). Nearly all members are found, not only in a gene context consistent with pilus biogenesis or a pilus-like secretion apparatus, but also near a DEAD/DEAH-box helicase, suggesting an involvement in DNA transfer activity. The model describes a clade restricted to the Actinobacteria.
Pssm-ID: 274798 [Multi-domain] Cd Length: 322 Bit Score: 50.03 E-value: 3.91e-07
CobQ/CobB/MinD/ParA nucleotide binding domain; This family consists of various cobyrinic acid ...
4-148
8.16e-07
CobQ/CobB/MinD/ParA nucleotide binding domain; This family consists of various cobyrinic acid a,c-diamide synthases. These include CbiA and CbiP from S.typhimurium, and CobQ from R. capsulatus. These amidases catalyze amidations to various side chains of hydrogenobyrinic acid or cobyrinic acid a,c-diamide in the biosynthesis of cobalamin (vitamin B12) from uroporphyrinogen III. Vitamin B12 is an important cofactor and an essential nutrient for many plants and animals and is primarily produced by bacteria. The family also contains dethiobiotin synthetases as well as the plasmid partitioning proteins of the MinD/ParA family.
Pssm-ID: 426369 [Multi-domain] Cd Length: 228 Bit Score: 48.50 E-value: 8.16e-07
Anion-transporting ATPase; This Pfam family represents a conserved domain, which is sometimes ...
8-54
1.63e-05
Anion-transporting ATPase; This Pfam family represents a conserved domain, which is sometimes repeated, in an anion-transporting ATPase. The ATPase is involved in the removal of arsenate, antimonite, and arsenate from the cell.
Pssm-ID: 396792 Cd Length: 302 Bit Score: 45.03 E-value: 1.63e-05
partition proteins ParAB family; ParA and ParB of Caulobacter crescentus belong to a conserved ...
3-40
2.25e-05
partition proteins ParAB family; ParA and ParB of Caulobacter crescentus belong to a conserved family of bacterial proteins implicated in chromosome segregation. ParB binds to DNA sequences adjacent to the origin of replication and localizes to opposite cell poles shortly following the initiation of DNA replication. ParB regulates the ParA ATPase activity by promoting nucleotide exchange in a fashion reminiscent of the exchange factors of eukaryotic G proteins. ADP-bound ParA binds single-stranded DNA, whereas the ATP-bound form dissociates ParB from its DNA binding sites. Increasing the fraction of ParA-ADP in the cell inhibits cell division, suggesting that this simple nucleotide switch may regulate cytokinesis. ParA shares sequence similarity to a conserved and widespread family of ATPases which includes the repA protein of the repABC operon in Rhizobium etli symbiotic plasmid. This operon is involved in the plasmid replication and partition.
Pssm-ID: 349760 [Multi-domain] Cd Length: 130 Bit Score: 42.91 E-value: 2.25e-05
SIMIBI (signal recognition particle, MinD and BioD)-class NTPases; SIMIBI (after signal ...
3-37
6.64e-05
SIMIBI (signal recognition particle, MinD and BioD)-class NTPases; SIMIBI (after signal recognition particle, MinD, and BioD), consists of signal recognition particle (SRP) GTPases, the assemblage of MinD-like ATPases, which are involved in protein localization, chromosome partitioning, and membrane transport, and a group of metabolic enzymes with kinase or related phosphate transferase activity. Functionally, proteins in this superfamily use the energy from hydrolysis of NTP to transfer electron or ion.
Pssm-ID: 349751 [Multi-domain] Cd Length: 107 Bit Score: 40.88 E-value: 6.64e-05
bacterial tyrosine-kinase; Bacterial tyrosine (BY)-kinases catalyze the autophosphorylation on ...
3-150
1.40e-03
bacterial tyrosine-kinase; Bacterial tyrosine (BY)-kinases catalyze the autophosphorylation on a C-terminal tyrosine cluster and also phosphorylate endogenous protein substrates by using ATP as phosphoryl donor. Besides their capacity to function as tyrosine kinase, most of these proteins are also involved in the production and transport of exopolysaccharides. BY-kinases are involved in a number of physiological processes ranging from stress resistance to pathogenicity.
Pssm-ID: 349772 [Multi-domain] Cd Length: 190 Bit Score: 38.32 E-value: 1.40e-03
accessory protein CooC1; The accessory protein CooC1, a nickel-binding ATPase, participates in ...
10-43
4.50e-03
accessory protein CooC1; The accessory protein CooC1, a nickel-binding ATPase, participates in the incorporation of nickel into the complex active site ([Ni-4Fe-4S]) cluster of Ni,Fe-dependent carbon monoxide dehydrogenase (CODH). CODH from Rhodospirillum rubrum catalyzes the reversible oxidation of CO to CO2. CODH contains a nickel-iron-sulfur cluster (C-center) and an iron-sulfur cluster (B-center). CO oxidation occurs at the C-center. Three accessory proteins encoded by cooCTJ genes are involved in nickel incorporation into a nickel site. CooC functions as a nickel insertase that mobilizes nickel to apoCODH using energy released from ATP hydrolysis. CooC is a homodimer and has NTPase activities. Mutation at the P-loop abolishs its function.
Pssm-ID: 349754 [Multi-domain] Cd Length: 249 Bit Score: 37.29 E-value: 4.50e-03
Arsenical pump-driving ATPase ArsA; ArsA ATPase functions as an efflux pump located on the ...
11-54
9.40e-03
Arsenical pump-driving ATPase ArsA; ArsA ATPase functions as an efflux pump located on the inner membrane of the cell. This ATP-driven oxyanion pump catalyzes the extrusion of arsenite, antimonite and arsenate. Maintenance of a low intracellular concentration of oxyanion produces resistance to the toxic agents. The pump is composed of two subunits, the catalytic ArsA subunit and the membrane subunit ArsB, which are encoded by arsA and arsB genes, respectively. Arsenic efflux in bacteria is catalyzed by either ArsB alone or by ArsAB complex. The ATP-coupled pump, however, is more efficient. ArsA is composed of two homologous halves, A1 and A2, connected by a short linker sequence.
Pssm-ID: 349755 [Multi-domain] Cd Length: 250 Bit Score: 36.33 E-value: 9.40e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options