glycoside hydrolase family 57 protein, such as amylopullulanase (APU, E.C 3.2.1.1/41), a type II pullulanase which can degrade both the alpha-1,6 and alpha-1,4 glucosidic bonds of starch, producing oligosaccharides.
N-terminal catalytic domain of thermoactive amylopullulanases; glycoside hydrolase family 57 ...
347-675
7.03e-103
N-terminal catalytic domain of thermoactive amylopullulanases; glycoside hydrolase family 57 (GH57); Pullulanases (EC 3.2.1.41) are capable of hydrolyzing the alpha-1,6 glucosidic bonds of pullulan, producing maltotriose. Amylopullulanases (APU, E.C 3.2.1.1/41) are type II pullulanases which can also degrade both the alpha-1,6 and alpha-1,4 glucosidic bonds of starch, producing oligosaccharides. This subfamily includes GH57 archaeal thermoactive APUs, which show both pullulanolytic and amylolytic activities. They have an acid pH optimum and the presence of Ca2+ might increase their activity, thermostability, and substrate affinity. Besides GH57 thermoactive APUs, all mesophilic and some thermoactive APUs belong to glycoside hydrolase family 13 with catalytic features distinct from GH57. This subfamily also includes many uncharacterized proteins found in bacteria and archaea.
:
Pssm-ID: 212108 Cd Length: 313 Bit Score: 322.24 E-value: 7.03e-103
N-terminal catalytic domain of thermoactive amylopullulanases; glycoside hydrolase family 57 ...
347-675
7.03e-103
N-terminal catalytic domain of thermoactive amylopullulanases; glycoside hydrolase family 57 (GH57); Pullulanases (EC 3.2.1.41) are capable of hydrolyzing the alpha-1,6 glucosidic bonds of pullulan, producing maltotriose. Amylopullulanases (APU, E.C 3.2.1.1/41) are type II pullulanases which can also degrade both the alpha-1,6 and alpha-1,4 glucosidic bonds of starch, producing oligosaccharides. This subfamily includes GH57 archaeal thermoactive APUs, which show both pullulanolytic and amylolytic activities. They have an acid pH optimum and the presence of Ca2+ might increase their activity, thermostability, and substrate affinity. Besides GH57 thermoactive APUs, all mesophilic and some thermoactive APUs belong to glycoside hydrolase family 13 with catalytic features distinct from GH57. This subfamily also includes many uncharacterized proteins found in bacteria and archaea.
Pssm-ID: 212108 Cd Length: 313 Bit Score: 322.24 E-value: 7.03e-103
N-terminal catalytic domain of thermoactive amylopullulanases; glycoside hydrolase family 57 ...
347-675
7.03e-103
N-terminal catalytic domain of thermoactive amylopullulanases; glycoside hydrolase family 57 (GH57); Pullulanases (EC 3.2.1.41) are capable of hydrolyzing the alpha-1,6 glucosidic bonds of pullulan, producing maltotriose. Amylopullulanases (APU, E.C 3.2.1.1/41) are type II pullulanases which can also degrade both the alpha-1,6 and alpha-1,4 glucosidic bonds of starch, producing oligosaccharides. This subfamily includes GH57 archaeal thermoactive APUs, which show both pullulanolytic and amylolytic activities. They have an acid pH optimum and the presence of Ca2+ might increase their activity, thermostability, and substrate affinity. Besides GH57 thermoactive APUs, all mesophilic and some thermoactive APUs belong to glycoside hydrolase family 13 with catalytic features distinct from GH57. This subfamily also includes many uncharacterized proteins found in bacteria and archaea.
Pssm-ID: 212108 Cd Length: 313 Bit Score: 322.24 E-value: 7.03e-103
N-terminal catalytic domain of heat stable retaining glycoside hydrolase family 57; Glycoside ...
349-675
5.59e-20
N-terminal catalytic domain of heat stable retaining glycoside hydrolase family 57; Glycoside hydrolase family 57(GH57) is a chiefly prokaryotic family with the majority of thermostable enzymes coming from extremophiles (many of these are archaeal hyperthermophiles), which exhibit the enzyme specificities of alpha-amylase (EC 3.2.1.1), 4-alpha-glucanotransferase (EC 2.4.1.25), amylopullulanase (EC 3.2.1.1/41), and alpha-galactosidase (EC 3.2.1.22). This family also includes many hypothetical proteins with uncharacterized activity and specificity. GH57s cleave alpha-glycosidic bonds by employing a retaining mechanism, which involves a glycosyl-enzyme intermediate, allowing transglycosylation.
Pssm-ID: 212096 [Multi-domain] Cd Length: 313 Bit Score: 91.73 E-value: 5.59e-20
N-terminal catalytic domain of 4-alpha-glucanotransferase; glycoside hydrolase family 57 (GH57) ...
448-654
1.81e-11
N-terminal catalytic domain of 4-alpha-glucanotransferase; glycoside hydrolase family 57 (GH57); 4-alpha-glucanotransferase (TLGT, EC 2.4.1.25) plays a key role in the maltose metabolism. It catalyzes the disproportionation of amylose and the formation of large cyclic alpha-1,4-glucan (cycloamylose) from linear amylose. TLGT functions as a homodimer. Each monomer is composed of two domains, an N-terminal catalytic domain with a (beta/alpha)7 barrel fold and a C-terminal domain with a twisted beta-sandwich fold. Some family members have been designated as alpha-amylases, such as the heat-stable eubacterial amylase from Dictyoglomus thermophilum (DtAmyA) and the extremely thermostable archaeal amylase from Pyrococcus furiosus(PfAmyA). However, both of these proteins are 4-alpha-glucanotransferases. DtAmyA was shown to have transglycosylating activity and PfAmyA exhibits 4-alpha-glucanotransferase activity.
Pssm-ID: 212105 [Multi-domain] Cd Length: 279 Bit Score: 65.68 E-value: 1.81e-11
N-terminal putative catalytic domain of mainly uncharacterized prokaryotic proteins similar to ...
462-611
9.53e-10
N-terminal putative catalytic domain of mainly uncharacterized prokaryotic proteins similar to archaeal thermoactive amylopullulanases; glycoside hydrolase family 57 (GH57); This subfamily of mainly uncharacterized bacterial proteins, shows high sequence homology to GH57 archaeal thermoactive amylopullulanases (APU, E.C 3.2.1.1/41). Thermoactive APUs are type II pullulanases with both pullulanolytic and amylolytic activities. They have an acid pH optimum and the presence of Ca2+ might increase their activity, thermostability, and substrate affinity.
Pssm-ID: 212109 Cd Length: 327 Bit Score: 61.12 E-value: 9.53e-10
N-terminal catalytic domain of a thermoactive alpha-amylase from Methanococcus jannaschii and ...
444-666
1.09e-06
N-terminal catalytic domain of a thermoactive alpha-amylase from Methanococcus jannaschii and similar proteins; glycoside hydrolase family 57 (GH57); The subfamily is represented by a thermostable alpha-amylase (MJA1, EC 3.2.1.1) encoded from the hyperthermophilic archaeon Methanococcus jannaschii locus, M J1611. MJA1 has a broad pH optimum 5.0-8.0. It exhibits extremely thermophilic alpha-amylase activity that catalyzes the hydrolysis of large sugar polymers with alpha-l,6 and alpha-l,4 linkages, and yields products including glucose polymers of 1-7 units. MJ1611 also encodes another alpha-amylase with catalytic features distinct from MJA1, which belongs to glycoside hydrolase family 13 (GH-13), and is not included here. This subfamily also includes many uncharacterized proteins found in bacteria and archaea.
Pssm-ID: 212107 Cd Length: 306 Bit Score: 51.40 E-value: 1.09e-06
N-terminal catalytic domain of alpha-amylase ( AmyC ) and similar proteins; Alpha-amylases ...
444-533
1.24e-05
N-terminal catalytic domain of alpha-amylase ( AmyC ) and similar proteins; Alpha-amylases (alpha-1,4-glucan-4-glucanohydrolases, EC 3.2.1.1) play essential roles in alpha-glucan metabolism by catalyzing the hydrolysis of polysaccharides such as amylose starch, and beta-limit dextrin. This subfamily is represented by a novel alpha-amylase (AmyC) encoded by hyperthermophilic organism Thermotoga maritime ORF tm1438, and its prokaryotic homologs. AmyC functions as a homotetramer and shows thermostable amylolytic activity. It is strongly inhibited by acarbose. AmyC is composed of a N-terminal catalytic domain, containing a distorted TIM-barrel structure with a characteristic (beta/alpha)7 fold motif, and two additional less conserved domains. There are other two canonical alpha-amylases encoded from T. maritime that lack the sequence similarity to AmyC, and belong to a different superfamily.
Pssm-ID: 212104 Cd Length: 412 Bit Score: 48.66 E-value: 1.24e-05
Uncharacterized subfamily of glycoside hydrolase family 57 (GH57); This subfamily of ...
348-676
5.42e-05
Uncharacterized subfamily of glycoside hydrolase family 57 (GH57); This subfamily of uncharacterized bacterial proteins, shows high sequence homology to glycoside hydrolase family 57 (GH57). Glycoside hydrolase family 57(GH57) is a chiefly prokaryotic family with the majority of thermostable enzymes coming from extremophiles (many of these are archaeal hyperthermophiles), which exhibit the enzyme specificities of alpha-amylase (EC 3.2.1.1), 4-alpha-glucanotransferase (EC 2.4.1.25), amylopullulanase (EC 3.2.1.1/41), and alpha-galactosidase (EC 3.2.1.22).
Pssm-ID: 212110 Cd Length: 330 Bit Score: 46.33 E-value: 5.42e-05
N-terminal catalytic domain of alpha-galactosidase; glycoside hydrolase family 57 (GH57); ...
448-528
5.28e-04
N-terminal catalytic domain of alpha-galactosidase; glycoside hydrolase family 57 (GH57); Alpha-galactosidases (GalA, EC 3.2.1.22) catalyze the hydrolysis of alpha-1,6-linked galactose residues from oligosaccharides and polymeric galactomannans. Based on sequence similarity, the majority of eukaryotic and bacterial GalAs have been classified into glycoside hydrolase family GH27, GH36, and GH4, respectively. This subfamily is represented by a novel type of GalA from Pyrococcus furiosus (PfGalA), which belongs to the GH57 family. PfGalA is an extremely thermo-active and thermostable GalA that functions as a bacterial-like GalA, however, without the capacity to hydrolyze polysaccharides. It specifically catalyzes the hydrolysis of para-nitrophenyl-alpha-galactopyranoside, and to some extent that of melibiose and raffinose. PfGalA has a pH optimum between 5.0-5.5.
Pssm-ID: 212106 Cd Length: 305 Bit Score: 43.13 E-value: 5.28e-04
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options