sugar-binding transcriptional regulator similar to Priestia megaterium central glycolytic genes regulator, in the absence of glucose, which represses the transcription of the gapA operon that encodes five key glycolytic enzymes
Putative sugar-binding domain; This probable domain is found in bacterial transcriptional ...
64-313
1.64e-64
Putative sugar-binding domain; This probable domain is found in bacterial transcriptional regulators such as DeoR and SorC. These proteins have an amino-terminal helix-turn-helix pfam00325 that binds to DNA. This domain is probably the ligand regulator binding region. SorC is regulated by sorbose and other members of this family are likely to be regulated by other sugar substrates.
Pssm-ID: 427778 Cd Length: 256 Bit Score: 204.01 E-value: 1.64e-64
RNA polymerase sigma factor, sigma-70 family; This model encompasses all varieties of the ...
5-47
2.43e-03
RNA polymerase sigma factor, sigma-70 family; This model encompasses all varieties of the sigma-70 type sigma factors including the ECF subfamily. A number of sigma factors have names with a different number than 70 (i.e. sigma-38), but in fact, all except for the Sigma-54 family (TIGR02395) are included within this family. Several Pfam models hit segments of these sequences including Sigma-70 region 2 (pfam04542) and Sigma-70, region 4 (pfam04545), but not always above their respective trusted cutoffs.
Pssm-ID: 274357 [Multi-domain] Cd Length: 158 Bit Score: 38.10 E-value: 2.43e-03
Putative sugar-binding domain; This probable domain is found in bacterial transcriptional ...
64-313
1.64e-64
Putative sugar-binding domain; This probable domain is found in bacterial transcriptional regulators such as DeoR and SorC. These proteins have an amino-terminal helix-turn-helix pfam00325 that binds to DNA. This domain is probably the ligand regulator binding region. SorC is regulated by sorbose and other members of this family are likely to be regulated by other sugar substrates.
Pssm-ID: 427778 Cd Length: 256 Bit Score: 204.01 E-value: 1.64e-64
DNA-directed RNA polymerase specialized sigma subunit [Transcription]; DNA-directed RNA polymerase specialized sigma subunit is part of the Pathway/BioSystem: RNA polymerase
Pssm-ID: 440804 [Multi-domain] Cd Length: 236 Bit Score: 42.89 E-value: 1.13e-04
RNA polymerase sigma factor, sigma-70 family; This model encompasses all varieties of the ...
5-47
2.43e-03
RNA polymerase sigma factor, sigma-70 family; This model encompasses all varieties of the sigma-70 type sigma factors including the ECF subfamily. A number of sigma factors have names with a different number than 70 (i.e. sigma-38), but in fact, all except for the Sigma-54 family (TIGR02395) are included within this family. Several Pfam models hit segments of these sequences including Sigma-70 region 2 (pfam04542) and Sigma-70, region 4 (pfam04545), but not always above their respective trusted cutoffs.
Pssm-ID: 274357 [Multi-domain] Cd Length: 158 Bit Score: 38.10 E-value: 2.43e-03
MarR family; The Mar proteins are involved in the multiple antibiotic resistance, a ...
13-52
4.64e-03
MarR family; The Mar proteins are involved in the multiple antibiotic resistance, a non-specific resistance system. The expression of the mar operon is controlled by a repressor, MarR. A large number of compounds induce transcription of the mar operon. This is thought to be due to the compound binding to MarR, and the resulting complex stops MarR binding to the DNA. With the MarR repression lost, transcription of the operon proceeds. The structure of MarR is known and shows MarR as a dimer with each subunit containing a winged-helix DNA binding motif.
Pssm-ID: 432797 [Multi-domain] Cd Length: 60 Bit Score: 34.87 E-value: 4.64e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options