dihydroorotate dehydrogenase electron transfer subunit [Gardnerella pickettii]
dihydroorotate dehydrogenase electron transfer subunit( domain architecture ID 10153129)
dihydroorotate dehydrogenase (DHODH), PyrK subunit, catalyzes, together with PyrD, the oxidation of (S)-dihydroorotate to orotate, an essential step in the pyrimidine de novo biosynthesis.
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
DHOD_e_trans | cd06218 | FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase. ... |
48-287 | 8.03e-92 | |||||
FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as 3 cofactors: FMN, FAD, and an [2Fe-2S] cluster. : Pssm-ID: 99814 [Multi-domain] Cd Length: 246 Bit Score: 272.50 E-value: 8.03e-92
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
DHOD_e_trans | cd06218 | FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase. ... |
48-287 | 8.03e-92 | |||||
FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as 3 cofactors: FMN, FAD, and an [2Fe-2S] cluster. Pssm-ID: 99814 [Multi-domain] Cd Length: 246 Bit Score: 272.50 E-value: 8.03e-92
|
|||||||||
PRK00054 | PRK00054 | dihydroorotate dehydrogenase electron transfer subunit; Reviewed |
47-291 | 1.31e-65 | |||||
dihydroorotate dehydrogenase electron transfer subunit; Reviewed Pssm-ID: 234601 [Multi-domain] Cd Length: 250 Bit Score: 205.88 E-value: 1.31e-65
|
|||||||||
Mcr1 | COG0543 | NAD(P)H-flavin reductase [Coenzyme transport and metabolism, Energy production and conversion]; ... |
47-293 | 6.58e-63 | |||||
NAD(P)H-flavin reductase [Coenzyme transport and metabolism, Energy production and conversion]; Pssm-ID: 440309 [Multi-domain] Cd Length: 247 Bit Score: 198.55 E-value: 6.58e-63
|
|||||||||
DHODB_Fe-S_bind | pfam10418 | Iron-sulfur cluster binding domain of dihydroorotate dehydrogenase B; Lactococcus lactis is ... |
255-291 | 1.61e-12 | |||||
Iron-sulfur cluster binding domain of dihydroorotate dehydrogenase B; Lactococcus lactis is one of the few organizms with two dihydroorotate dehydrogenases, DHODs, A and B. The B enzyme is a prototype for DHODs in Gram-positive bacteria that use NAD+ as the second substrate. DHODB is a hetero-tetramer composed of a central homodimer of PyrDB subunits resembling the DHODA structure and two PyrK subunits along with three different cofactors: FMN, FAD, and a [2Fe-2S] cluster. The [2Fe-2S] iron-sulfur cluster binds to this C-terminal domain of the PyrK subunit, which is at the interface between the flavin and NAD binding domains and contains three beta-strands. The four cysteine residues at the N-terminal part of this domain are the ones that bind, in pairs, to the iron-sulfur cluster. The conformation of the whole molecule means that the iron-sulfur cluster is localized in a well-ordered part of this domain close to the FAD binding site. The FAD and and NAD binding domains are FAD_binding_6, pfam00970 and NAD_binding_1, pfam00175. Pssm-ID: 463084 [Multi-domain] Cd Length: 40 Bit Score: 60.69 E-value: 1.61e-12
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
DHOD_e_trans | cd06218 | FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase. ... |
48-287 | 8.03e-92 | |||||
FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as 3 cofactors: FMN, FAD, and an [2Fe-2S] cluster. Pssm-ID: 99814 [Multi-domain] Cd Length: 246 Bit Score: 272.50 E-value: 8.03e-92
|
|||||||||
PRK00054 | PRK00054 | dihydroorotate dehydrogenase electron transfer subunit; Reviewed |
47-291 | 1.31e-65 | |||||
dihydroorotate dehydrogenase electron transfer subunit; Reviewed Pssm-ID: 234601 [Multi-domain] Cd Length: 250 Bit Score: 205.88 E-value: 1.31e-65
|
|||||||||
Mcr1 | COG0543 | NAD(P)H-flavin reductase [Coenzyme transport and metabolism, Energy production and conversion]; ... |
47-293 | 6.58e-63 | |||||
NAD(P)H-flavin reductase [Coenzyme transport and metabolism, Energy production and conversion]; Pssm-ID: 440309 [Multi-domain] Cd Length: 247 Bit Score: 198.55 E-value: 6.58e-63
|
|||||||||
DHOD_e_trans_like | cd06192 | FAD/NAD binding domain (electron transfer subunit) of dihydroorotate dehydrogenase-like ... |
48-287 | 2.04e-39 | |||||
FAD/NAD binding domain (electron transfer subunit) of dihydroorotate dehydrogenase-like proteins. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as NAD binding. NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal domain may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Ferredoxin is reduced in the final stage of photosystem I. The flavoprotein Ferredoxin-NADP+ reductase transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) which then transfers a hydride ion to convert NADP+ to NADPH. Pssm-ID: 99789 [Multi-domain] Cd Length: 243 Bit Score: 138.23 E-value: 2.04e-39
|
|||||||||
DHOD_e_trans_like1 | cd06219 | FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase-like ... |
47-288 | 1.11e-38 | |||||
FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase-like proteins. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as NAD binding. NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal domain may contain a flavin prosthetic group, as in flavoenzymes, or use flavin as a substrate. Ferredoxin is reduced in the final stage of photosystem I. The flavoprotein Ferredoxin-NADP+ reductase transfers electrons from reduced ferredoxin to FAD, forming FADH2 via a semiquinone intermediate, and then transfers a hydride ion to convert NADP+ to NADPH. Pssm-ID: 99815 [Multi-domain] Cd Length: 248 Bit Score: 136.17 E-value: 1.11e-38
|
|||||||||
PRK06222 | PRK06222 | sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein; |
47-294 | 2.04e-36 | |||||
sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein; Pssm-ID: 235747 [Multi-domain] Cd Length: 281 Bit Score: 131.46 E-value: 2.04e-36
|
|||||||||
DHOD_e_trans_like2 | cd06220 | FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase-like ... |
46-291 | 7.66e-36 | |||||
FAD/NAD binding domain in the electron transfer subunit of dihydroorotate dehydrogenase-like proteins. Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. In L. lactis, DHOD B (encoded by pyrDa) is co-expressed with pyrK and both gene products are required for full activity, as well as 3 cofactors: FMN, FAD, and an [2Fe-2S] cluster. Pssm-ID: 99816 [Multi-domain] Cd Length: 233 Bit Score: 128.52 E-value: 7.66e-36
|
|||||||||
PRK12778 | PRK12778 | bifunctional dihydroorotate dehydrogenase B NAD binding subunit/NADPH-dependent glutamate ... |
47-294 | 7.52e-33 | |||||
bifunctional dihydroorotate dehydrogenase B NAD binding subunit/NADPH-dependent glutamate synthase; Pssm-ID: 237200 [Multi-domain] Cd Length: 752 Bit Score: 127.55 E-value: 7.52e-33
|
|||||||||
sulfite_reductase_like | cd06221 | Anaerobic sulfite reductase contains an FAD and NADPH binding module with structural ... |
55-287 | 1.35e-27 | |||||
Anaerobic sulfite reductase contains an FAD and NADPH binding module with structural similarity to ferredoxin reductase and sequence similarity to dihydroorotate dehydrogenases. Clostridium pasteurianum inducible dissimilatory type sulfite reductase is linked to ferredoxin and reduces NH2OH and SeO3 at a lesser rate than it's normal substate SO3(2-). Dihydroorotate dehydrogenases (DHODs) catalyze the only redox reaction in pyrimidine de novo biosynthesis. They catalyze the oxidation of (S)-dihydroorotate to orotate coupled with the reduction of NAD+. Pssm-ID: 99817 [Multi-domain] Cd Length: 253 Bit Score: 107.31 E-value: 1.35e-27
|
|||||||||
PRK12775 | PRK12775 | putative trifunctional 2-polyprenylphenol hydroxylase/glutamate synthase subunit beta/ferritin ... |
68-291 | 3.34e-26 | |||||
putative trifunctional 2-polyprenylphenol hydroxylase/glutamate synthase subunit beta/ferritin domain-containing protein; Provisional Pssm-ID: 183738 [Multi-domain] Cd Length: 1006 Bit Score: 108.49 E-value: 3.34e-26
|
|||||||||
PRK12779 | PRK12779 | putative bifunctional glutamate synthase subunit beta/2-polyprenylphenol hydroxylase; ... |
41-294 | 8.00e-18 | |||||
putative bifunctional glutamate synthase subunit beta/2-polyprenylphenol hydroxylase; Provisional Pssm-ID: 183740 [Multi-domain] Cd Length: 944 Bit Score: 83.73 E-value: 8.00e-18
|
|||||||||
PRK08345 | PRK08345 | cytochrome-c3 hydrogenase subunit gamma; Provisional |
45-286 | 1.50e-15 | |||||
cytochrome-c3 hydrogenase subunit gamma; Provisional Pssm-ID: 236247 [Multi-domain] Cd Length: 289 Bit Score: 75.23 E-value: 1.50e-15
|
|||||||||
FNR_like | cd00322 | Ferredoxin reductase (FNR), an FAD and NAD(P) binding protein, was intially identified as a ... |
51-248 | 1.34e-14 | |||||
Ferredoxin reductase (FNR), an FAD and NAD(P) binding protein, was intially identified as a chloroplast reductase activity, catalyzing the electron transfer from reduced iron-sulfur protein ferredoxin to NADP+ as the final step in the electron transport mechanism of photosystem I. FNR transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) and then transfers a hydride ion to convert NADP+ to NADPH. FNR has since been shown to utilize a variety of electron acceptors and donors and has a variety of physiological functions including nitrogen assimilation, dinitrogen fixation, steroid hydroxylation, fatty acid metabolism, oxygenase activity, and methane assimilation in many organisms. FNR has an NAD(P)-binding sub-domain of the alpha/beta class and a discrete (usually N-terminal) flavin sub-domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal moeity may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Because flavins such as FAD can exist in oxidized, semiquinone (one- electron reduced), or fully reduced hydroquinone forms, FNR can interact with one and 2 electron carriers. FNR has a strong preference for NADP(H) vs NAD(H). Pssm-ID: 99778 [Multi-domain] Cd Length: 223 Bit Score: 71.32 E-value: 1.34e-14
|
|||||||||
Fpr | COG1018 | Flavodoxin/ferredoxin--NADP reductase [Energy production and conversion]; |
42-248 | 1.36e-14 | |||||
Flavodoxin/ferredoxin--NADP reductase [Energy production and conversion]; Pssm-ID: 440641 [Multi-domain] Cd Length: 231 Bit Score: 71.36 E-value: 1.36e-14
|
|||||||||
DHODB_Fe-S_bind | pfam10418 | Iron-sulfur cluster binding domain of dihydroorotate dehydrogenase B; Lactococcus lactis is ... |
255-291 | 1.61e-12 | |||||
Iron-sulfur cluster binding domain of dihydroorotate dehydrogenase B; Lactococcus lactis is one of the few organizms with two dihydroorotate dehydrogenases, DHODs, A and B. The B enzyme is a prototype for DHODs in Gram-positive bacteria that use NAD+ as the second substrate. DHODB is a hetero-tetramer composed of a central homodimer of PyrDB subunits resembling the DHODA structure and two PyrK subunits along with three different cofactors: FMN, FAD, and a [2Fe-2S] cluster. The [2Fe-2S] iron-sulfur cluster binds to this C-terminal domain of the PyrK subunit, which is at the interface between the flavin and NAD binding domains and contains three beta-strands. The four cysteine residues at the N-terminal part of this domain are the ones that bind, in pairs, to the iron-sulfur cluster. The conformation of the whole molecule means that the iron-sulfur cluster is localized in a well-ordered part of this domain close to the FAD binding site. The FAD and and NAD binding domains are FAD_binding_6, pfam00970 and NAD_binding_1, pfam00175. Pssm-ID: 463084 [Multi-domain] Cd Length: 40 Bit Score: 60.69 E-value: 1.61e-12
|
|||||||||
FNR_like_3 | cd06198 | NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer ... |
61-251 | 2.98e-12 | |||||
NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding sub-domain of the alpha/beta class and a discrete (usually N-terminal) domain, which varies in orientation with respect to the NAD(P) binding domain. The N-terminal domain may contain a flavin prosthetic group (as in flavoenzymes) or use flavin as a substrate. Ferredoxin is reduced in the final stage of photosystem I. The flavoprotein Ferredoxin-NADP+ reductase transfers electrons from reduced ferredoxin to FAD (forming FADH2 via a semiquinone intermediate) which then transfers a hydride ion to convert NADP+ to NADPH. Pssm-ID: 99795 [Multi-domain] Cd Length: 216 Bit Score: 64.59 E-value: 2.98e-12
|
|||||||||
COG4097 | COG4097 | Predicted ferric reductase [Inorganic ion transport and metabolism]; |
37-249 | 1.08e-11 | |||||
Predicted ferric reductase [Inorganic ion transport and metabolism]; Pssm-ID: 443273 [Multi-domain] Cd Length: 442 Bit Score: 64.91 E-value: 1.08e-11
|
|||||||||
PA_degradation_oxidoreductase_like | cd06214 | NAD(P) binding domain of ferredoxin reductase like phenylacetic acid (PA) degradation ... |
119-248 | 6.00e-09 | |||||
NAD(P) binding domain of ferredoxin reductase like phenylacetic acid (PA) degradation oxidoreductase. PA oxidoreductases of E. coli hydroxylate PA-CoA in the second step of PA degradation. Members of this group typically fuse a ferredoxin reductase-like domain with an iron-sulfur binding cluster domain. Ferredoxins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal portion may contain a flavin prosthetic group, as in flavoenzymes, or use flavin as a substrate. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria and participate in a wide variety of redox metabolic pathways. The C-terminal domain contains most of the NADP(H) binding residues and the N-terminal domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. Ferredoxin-NADP+ reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. Pssm-ID: 99810 [Multi-domain] Cd Length: 241 Bit Score: 55.24 E-value: 6.00e-09
|
|||||||||
cyt_b5_reduct_like | cd06183 | Cytochrome b5 reductase catalyzes the reduction of 2 molecules of cytochrome b5 using NADH as ... |
59-237 | 8.49e-08 | |||||
Cytochrome b5 reductase catalyzes the reduction of 2 molecules of cytochrome b5 using NADH as an electron donor. Like ferredoxin reductases, these proteins have an N-terminal FAD binding subdomain and a C-terminal NADH binding subdomain, separated by a cleft, which accepts FAD. The NADH-binding moiety interacts with part of the FAD and resembles a Rossmann fold. However, NAD is bound differently than in canonical Rossmann fold proteins. Nitrate reductases, flavoproteins similar to pyridine nucleotide cytochrome reductases, catalyze the reduction of nitrate to nitrite. The enzyme can be divided into three functional fragments that bind the cofactors molybdopterin, heme-iron, and FAD/NADH. Pssm-ID: 99780 [Multi-domain] Cd Length: 234 Bit Score: 51.80 E-value: 8.49e-08
|
|||||||||
MMO_FAD_NAD_binding | cd06210 | Methane monooxygenase (MMO) reductase of methanotrophs catalyzes the NADH-dependent ... |
43-255 | 5.10e-07 | |||||
Methane monooxygenase (MMO) reductase of methanotrophs catalyzes the NADH-dependent hydroxylation of methane to methanol. This multicomponent enzyme mediates electron transfer via a hydroxylase (MMOH), a coupling protein, and a reductase which is comprised of an N-terminal [2Fe-2S] ferredoxin domain, an FAD binding subdomain, and an NADH binding subdomain. Oxygenases oxidize hydrocarbons using dioxygen as the oxidant. Dioxygenases add both atom of oxygen to the substrate, while mono-oxygenases add one atom to the substrate and one atom to water. Pssm-ID: 99806 Cd Length: 236 Bit Score: 49.65 E-value: 5.10e-07
|
|||||||||
flavohem_like_fad_nad_binding | cd06184 | FAD_NAD(P)H binding domain of flavohemoglobin. Flavohemoglobins have a globin domain ... |
119-248 | 2.50e-06 | |||||
FAD_NAD(P)H binding domain of flavohemoglobin. Flavohemoglobins have a globin domain containing a B-type heme fused with a ferredoxin reductase-like FAD/NAD-binding domain. Flavohemoglobins detoxify nitric oxide (NO) via an NO dioxygenase reaction. The hemoglobin domain adopts a globin fold with an embedded heme molecule. Flavohemoglobins also have a C-terminal reductase domain with bindiing sites for FAD and NAD(P)H. This domain catalyzes the conversion of NO + O2 + NAD(P)H to NO3- + NAD(P)+. Instead of the oxygen transport function of hemoglobins, flavohemoglobins seem to act in NO dioxygenation and NO signalling. Pssm-ID: 99781 Cd Length: 247 Bit Score: 47.55 E-value: 2.50e-06
|
|||||||||
FNR_iron_sulfur_binding_1 | cd06215 | Iron-sulfur binding ferredoxin reductase (FNR) proteins combine the FAD and NAD(P) binding ... |
74-239 | 3.60e-06 | |||||
Iron-sulfur binding ferredoxin reductase (FNR) proteins combine the FAD and NAD(P) binding regions of FNR with an iron-sulfur binding cluster domain. Ferredoxin-NADP+ (oxido)reductase is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of these flavoproteins (i.e. having a non-covalently bound FAD as a prosthetic group) are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. The C-terminal portion of the FAD/NAD binding domain contains most of the NADP(H) binding residues and the N-terminal sub-domain interacts non-covalently with the isoalloxazine rings of the flavin molecule which lies largely in a large gap betweed the two domains. In this ferredoxin like sub-group, the FAD/NAD sub-domains is typically fused to a C-terminal iron-sulfur binding domain. Iron-sulfur proteins play an important role in electron transfer processes and in various enzymatic reactions. The family includes plant and algal ferredoxins which act as electron carriers in photosynthesis and ferredoxins which participate in redox chains from bacteria to mammals. Ferredoxin reductase first accepts one electron from reduced ferredoxin to form a flavin semiquinone intermediate. The enzyme then accepts a second electron to form FADH2 which then transfers two electrons and a proton to NADP+ to form NADPH. Pssm-ID: 99811 [Multi-domain] Cd Length: 231 Bit Score: 47.20 E-value: 3.60e-06
|
|||||||||
PRK05802 | PRK05802 | sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein; |
42-278 | 1.11e-05 | |||||
sulfide/dihydroorotate dehydrogenase-like FAD/NAD-binding protein; Pssm-ID: 235613 [Multi-domain] Cd Length: 320 Bit Score: 46.12 E-value: 1.11e-05
|
|||||||||
NADH_quinone_reductase | cd06188 | Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) FAD/NADH binding domain. (Na+-NQR) ... |
111-239 | 1.60e-05 | |||||
Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) FAD/NADH binding domain. (Na+-NQR) provides a means of storing redox reaction energy via the transmembrane translocation of Na2+ ions. The C-terminal domain resembles ferredoxin:NADP+ oxidoreductase, and has NADH and FAD binding sites. (Na+-NQR) is distinct from H+-translocating NADH:quinone oxidoreductases and noncoupled NADH:quinone oxidoreductases. The NAD(P) binding domain of ferredoxin reductase-like proteins catalyze electron transfer between an NAD(P)-binding domain of the alpha/beta class and a discrete (usually N-terminal) domain which vary in orientation with respect to the NAD(P) binding domain. The N-terminal domain of this group typically contains an iron-sulfur cluster binding domain. Pssm-ID: 99785 [Multi-domain] Cd Length: 283 Bit Score: 45.37 E-value: 1.60e-05
|
|||||||||
NAD_binding_1 | pfam00175 | Oxidoreductase NAD-binding domain; Xanthine dehydrogenases, that also bind FAD/NAD, have ... |
146-241 | 2.82e-04 | |||||
Oxidoreductase NAD-binding domain; Xanthine dehydrogenases, that also bind FAD/NAD, have essentially no similarity. Pssm-ID: 425503 [Multi-domain] Cd Length: 109 Bit Score: 39.55 E-value: 2.82e-04
|
|||||||||
NOX_Duox_like_FAD_NADP | cd06186 | NADPH oxidase (NOX) catalyzes the generation of reactive oxygen species (ROS) such as ... |
46-247 | 3.74e-04 | |||||
NADPH oxidase (NOX) catalyzes the generation of reactive oxygen species (ROS) such as superoxide and hydrogen peroxide. ROS were originally identified as bactericidal agents in phagocytes, but are now also implicated in cell signaling and metabolism. NOX has a 6-alpha helix heme-binding transmembrane domain fused to a flavoprotein with the nucleotide binding domain located in the cytoplasm. Duox enzymes link a peroxidase domain to the NOX domain via a single transmembrane and EF-hand Ca2+ binding sites. The flavoprotein module has a ferredoxin like FAD/NADPH binding domain. In classical phagocytic NOX2, electron transfer occurs from NADPH to FAD to the heme of cytb to oxygen leading to superoxide formation. Pssm-ID: 99783 [Multi-domain] Cd Length: 210 Bit Score: 40.75 E-value: 3.74e-04
|
|||||||||
PLN02631 | PLN02631 | ferric-chelate reductase |
73-175 | 1.26e-03 | |||||
ferric-chelate reductase Pssm-ID: 178238 [Multi-domain] Cd Length: 699 Bit Score: 40.41 E-value: 1.26e-03
|
|||||||||
PDR_like | cd06185 | Phthalate dioxygenase reductase (PDR) is an FMN-dependent reductase that mediates electron ... |
118-246 | 1.63e-03 | |||||
Phthalate dioxygenase reductase (PDR) is an FMN-dependent reductase that mediates electron transfer from NADH to FMN to an iron sulfur cluster. PDR has an an N-terminal ferrredoxin reductase (FNR)-like NAD(H) binding domain and a C-terminal iron-sulfur [2Fe-2S] cluster domain. Although structurally homologous to FNR, PDR binds FMN rather than FAD in it's FNR-like domain. Electron transfer between pyrimidines and iron-sulfur clusters (Rieske center [2Fe-2S]) or heme groups is mediated by flavins in respiration, photosynthesis, and oxygenase systems. Type I dioxygenase systems, including the hydroxylate phthalate system, have 2 components, a monomeric reductase consisting of a flavin and a 2Fe-2S center and a multimeric oxygenase. In contrast to other Rieske dioxygenases the ferredoxin like domain is C-, not N-terminal. Pssm-ID: 99782 [Multi-domain] Cd Length: 211 Bit Score: 39.00 E-value: 1.63e-03
|
|||||||||
PLN02252 | PLN02252 | nitrate reductase [NADPH] |
111-192 | 1.63e-03 | |||||
nitrate reductase [NADPH] Pssm-ID: 215141 [Multi-domain] Cd Length: 888 Bit Score: 40.05 E-value: 1.63e-03
|
|||||||||
phenol_2-monooxygenase_like | cd06211 | Phenol 2-monooxygenase (phenol hydroxylase) is a flavoprotein monooxygenase, able to use ... |
65-179 | 2.89e-03 | |||||
Phenol 2-monooxygenase (phenol hydroxylase) is a flavoprotein monooxygenase, able to use molecular oxygen as a substrate in the microbial degredation of phenol. This protein is encoded by a single gene and uses a tightly bound FAD cofactor in the NAD(P)H dependent conversion of phenol and O2 to catechol and H2O. This group is related to the NAD binding ferredoxin reductases. Pssm-ID: 99807 Cd Length: 238 Bit Score: 38.46 E-value: 2.89e-03
|
|||||||||
flavin_oxioreductase | cd06189 | NAD(P)H dependent flavin oxidoreductases use flavin as a substrate in mediating electron ... |
48-152 | 3.37e-03 | |||||
NAD(P)H dependent flavin oxidoreductases use flavin as a substrate in mediating electron transfer from iron complexes or iron proteins. Structurally similar to ferredoxin reductases, but with only 15% sequence identity, flavin reductases reduce FAD, FMN, or riboflavin via NAD(P)H. Flavin is used as a substrate, rather than a tightly bound prosthetic group as in flavoenzymes; weaker binding is due to the absence of a binding site for the AMP moeity of FAD. Pssm-ID: 99786 [Multi-domain] Cd Length: 224 Bit Score: 37.91 E-value: 3.37e-03
|
|||||||||
PTZ00319 | PTZ00319 | NADH-cytochrome B5 reductase; Provisional |
111-237 | 3.66e-03 | |||||
NADH-cytochrome B5 reductase; Provisional Pssm-ID: 173521 [Multi-domain] Cd Length: 300 Bit Score: 38.27 E-value: 3.66e-03
|
|||||||||
Blast search parameters | ||||
|