NAD(P)H-dependent flavin oxidoreductase similar to nitronate monooxygenase, an FMN-dependent enzyme that uses molecular oxygen to oxidize (anionic) alkyl nitronates and nitroalkanes to the corresponding carbonyl compounds and nitrite
2-Nitropropane dioxygenase (NPD), one of the nitroalkane oxidizing enzyme families, catalyzes ...
12-248
3.27e-67
2-Nitropropane dioxygenase (NPD), one of the nitroalkane oxidizing enzyme families, catalyzes oxidative denitrification of nitroalkanes to their corresponding carbonyl compounds and nitrites. NDP is a member of the NAD(P)H-dependent flavin oxidoreductase family that reduce a range of alternative electron acceptors. Most use FAD/FMN as a cofactor and NAD(P)H as electron donor. Some contain 4Fe-4S cluster to transfer electron from FAD to FMN.
Pssm-ID: 240081 [Multi-domain] Cd Length: 236 Bit Score: 210.42 E-value: 3.27e-67
Nitronate monooxygenase; Nitronate monooxygenase (NMO), formerly referred to as 2-nitropropane ...
9-323
1.09e-55
Nitronate monooxygenase; Nitronate monooxygenase (NMO), formerly referred to as 2-nitropropane dioxygenase (NPD) (EC:1.13.11.32), is an FMN-dependent enzyme that uses molecular oxygen to oxidize (anionic) alkyl nitronates and, in the case of the enzyme from Neurospora crassa, (neutral) nitroalkanes to the corresponding carbonyl compounds and nitrite. Previously classified as 2-nitropropane dioxygenase, but it is now recognized that this was the result of the slow ionization of nitroalkanes to their nitronate (anionic) forms. The enzymes from the fungus Neurospora crassa and the yeast Williopsis saturnus var. mrakii (formerly classified as Hansenula mrakii) contain non-covalently bound FMN as the cofactor. Active towards linear alkyl nitronates of lengths between 2 and 6 carbon atoms and, with lower activity, towards propyl-2-nitronate. The enzyme from N. crassa can also utilize neutral nitroalkanes, but with lower activity. One atom of oxygen is incorporated into the carbonyl group of the aldehyde product. The reaction appears to involve the formation of an enzyme-bound nitronate radical and an a-peroxynitroethane species, which then decomposes, either in the active site of the enzyme or after release, to acetaldehyde and nitrite.
Pssm-ID: 367316 [Multi-domain] Cd Length: 331 Bit Score: 183.87 E-value: 1.09e-55
2-Nitropropane dioxygenase (NPD), one of the nitroalkane oxidizing enzyme families, catalyzes ...
12-248
3.27e-67
2-Nitropropane dioxygenase (NPD), one of the nitroalkane oxidizing enzyme families, catalyzes oxidative denitrification of nitroalkanes to their corresponding carbonyl compounds and nitrites. NDP is a member of the NAD(P)H-dependent flavin oxidoreductase family that reduce a range of alternative electron acceptors. Most use FAD/FMN as a cofactor and NAD(P)H as electron donor. Some contain 4Fe-4S cluster to transfer electron from FAD to FMN.
Pssm-ID: 240081 [Multi-domain] Cd Length: 236 Bit Score: 210.42 E-value: 3.27e-67
Nitronate monooxygenase; Nitronate monooxygenase (NMO), formerly referred to as 2-nitropropane ...
9-323
1.09e-55
Nitronate monooxygenase; Nitronate monooxygenase (NMO), formerly referred to as 2-nitropropane dioxygenase (NPD) (EC:1.13.11.32), is an FMN-dependent enzyme that uses molecular oxygen to oxidize (anionic) alkyl nitronates and, in the case of the enzyme from Neurospora crassa, (neutral) nitroalkanes to the corresponding carbonyl compounds and nitrite. Previously classified as 2-nitropropane dioxygenase, but it is now recognized that this was the result of the slow ionization of nitroalkanes to their nitronate (anionic) forms. The enzymes from the fungus Neurospora crassa and the yeast Williopsis saturnus var. mrakii (formerly classified as Hansenula mrakii) contain non-covalently bound FMN as the cofactor. Active towards linear alkyl nitronates of lengths between 2 and 6 carbon atoms and, with lower activity, towards propyl-2-nitronate. The enzyme from N. crassa can also utilize neutral nitroalkanes, but with lower activity. One atom of oxygen is incorporated into the carbonyl group of the aldehyde product. The reaction appears to involve the formation of an enzyme-bound nitronate radical and an a-peroxynitroethane species, which then decomposes, either in the active site of the enzyme or after release, to acetaldehyde and nitrite.
Pssm-ID: 367316 [Multi-domain] Cd Length: 331 Bit Score: 183.87 E-value: 1.09e-55
TIM barrel proteins share a structurally conserved phosphate binding motif and in general ...
16-217
2.83e-09
TIM barrel proteins share a structurally conserved phosphate binding motif and in general share an eight beta/alpha closed barrel structure. Specific for this family is the conserved phosphate binding site at the edges of strands 7 and 8. The phosphate comes either from the substrate, as in the case of inosine monophosphate dehydrogenase (IMPDH), or from ribulose-5-phosphate 3-epimerase (RPE) or from cofactors, like FMN.
Pssm-ID: 240073 [Multi-domain] Cd Length: 200 Bit Score: 56.06 E-value: 2.83e-09
Class I aldolases; Class I aldolases. The class I aldolases use an active-site lysine which ...
104-216
4.58e-08
Class I aldolases; Class I aldolases. The class I aldolases use an active-site lysine which stabilizes a reaction intermediates via Schiff base formation, and have TIM beta/alpha barrel fold. The members of this family include 2-keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-4-hydroxyglutarate (KHG) aldolases, transaldolase, dihydrodipicolinate synthase sub-family, Type I 3-dehydroquinate dehydratase, DeoC and DhnA proteins, and metal-independent fructose-1,6-bisphosphate aldolase. Although structurally similar, the class II aldolases use a different mechanism and are believed to have an independent evolutionary origin.
Pssm-ID: 188634 [Multi-domain] Cd Length: 201 Bit Score: 52.72 E-value: 4.58e-08
2-Nitropropane dioxygenase (NPD)-like domain, associated with the (acyl-carrier-protein) ...
27-233
3.62e-05
2-Nitropropane dioxygenase (NPD)-like domain, associated with the (acyl-carrier-protein) S-malonyltransferase FabD. NPD is part of the nitroalkaneoxidizing enzyme family, that catalyzes oxidative denitrification of nitroalkanes to their corresponding carbonyl compounds and nitrites. NDPs are members of the NAD(P)H-dependent flavin oxidoreductase family that reduce a range of alternative electron acceptors. Most use FAD/FMN as a cofactor and NAD(P)H as electron donor. Some contain 4Fe-4S cluster to transfer electron from FAD to FMN.
Pssm-ID: 240093 Cd Length: 418 Bit Score: 44.93 E-value: 3.62e-05
IMPDH: The catalytic domain of the inosine monophosphate dehydrogenase. IMPDH catalyzes the ...
15-225
1.02e-04
IMPDH: The catalytic domain of the inosine monophosphate dehydrogenase. IMPDH catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5' monophosphate (XMP). It is a rate-limiting step in the de novo synthesis of the guanine nucleotides. There is often a CBS domain inserted in the middle of this domain, which is proposed to play a regulatory role. IMPDH is a key enzyme in the regulation of cell proliferation and differentiation. It has been identified as an attractive target for developing chemotherapeutic agents.
Pssm-ID: 238223 [Multi-domain] Cd Length: 325 Bit Score: 43.27 E-value: 1.02e-04
Family of homologous FMN-dependent alpha-hydroxyacid oxidizing enzymes. This family occurs in ...
141-216
1.16e-04
Family of homologous FMN-dependent alpha-hydroxyacid oxidizing enzymes. This family occurs in both prokaryotes and eukaryotes. Members of this family include flavocytochrome b2 (FCB2), glycolate oxidase (GOX), lactate monooxygenase (LMO), mandelate dehydrogenase (MDH), and long chain hydroxyacid oxidase (LCHAO). In green plants, glycolate oxidase is one of the key enzymes in photorespiration where it oxidizes glycolate to glyoxylate. LMO catalyzes the oxidation of L-lactate to acetate and carbon dioxide. MDH oxidizes (S)-mandelate to phenylglyoxalate. It is an enzyme in the mandelate pathway that occurs in several strains of Pseudomonas which converts (R)-mandelate to benzoate.
Pssm-ID: 239203 [Multi-domain] Cd Length: 299 Bit Score: 43.20 E-value: 1.16e-04
N-acetylmannosamine-6-phosphate epimerase (NanE) converts N-acetylmannosamine-6-phosphate to ...
115-224
1.26e-04
N-acetylmannosamine-6-phosphate epimerase (NanE) converts N-acetylmannosamine-6-phosphate to N-acetylglucosamine-6-phosphate. This reaction is part of the pathway that allows the usage of sialic acid as a carbohydrate source. Sialic acids are a family of related sugars that are found as a component of glycoproteins, gangliosides, and other sialoglycoconjugates.
Pssm-ID: 240080 [Multi-domain] Cd Length: 219 Bit Score: 42.56 E-value: 1.26e-04
Conserved region in glutamate synthase; This family represents a region of the glutamate ...
61-218
8.09e-03
Conserved region in glutamate synthase; This family represents a region of the glutamate synthase protein. This region is expressed as a separate subunit in the glutamate synthase alpha subunit from archaebacteria, or part of a large multidomain enzyme in other organizms. The aligned region of these proteins contains a putative FMN binding site and Fe-S cluster.
Pssm-ID: 396287 [Multi-domain] Cd Length: 367 Bit Score: 37.70 E-value: 8.09e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options