MULTISPECIES: lactoylglutathione lyase [Pseudoalteromonas]
VOC family protein( domain architecture ID 50733)
vicinal oxygen chelate (VOC) family protein uses a metal center to coordinate a substrate, intermediate, or transition state through vicinal oxygen atoms
List of domain hits
Name | Accession | Description | Interval | E-value | |||
VOC super family | cl14632 | vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed ... |
14-172 | 2.67e-93 | |||
vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). Type I extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into aromatic substrates, which results in the cleavage of aromatic rings. They are key enzymes in the degradation of aromatic compounds. Type I extradiol dioxygenases include class I and class II enzymes. Class I and II enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. Glyoxylase I catalyzes the glutathione-dependent inactivation of toxic methylglyoxal, requiring zinc or nickel ions for activity. The antibiotic resistance proteins in this family use a variety of mechanisms to block the function of antibiotics. Bleomycin resistance protein (BLMA) sequesters bleomycin's activity by directly binding to it. Whereas, three types of fosfomycin resistance proteins employ different mechanisms to render fosfomycin inactive by modifying the fosfomycin molecule. Although the proteins in this superfamily are functionally distinct, their structures are similar. The difference among the three dimensional structures of the three types of proteins in this superfamily is interesting from an evolutionary perspective. Both glyoxalase I and BLMA show domain swapping between subunits. However, there is no domain swapping for type 1 extradiol dioxygenases. The actual alignment was detected with superfamily member PLN03042: Pssm-ID: 472697 Cd Length: 185 Bit Score: 269.00 E-value: 2.67e-93
|
|||||||
Name | Accession | Description | Interval | E-value | |||
PLN03042 | PLN03042 | Lactoylglutathione lyase; Provisional |
14-172 | 2.67e-93 | |||
Lactoylglutathione lyase; Provisional Pssm-ID: 215548 Cd Length: 185 Bit Score: 269.00 E-value: 2.67e-93
|
|||||||
GlxI_Zn | cd07233 | Glyoxalase I that uses Zn(++) as cofactor; This family includes eukaryotic glyoxalase I that ... |
20-163 | 2.11e-87 | |||
Glyoxalase I that uses Zn(++) as cofactor; This family includes eukaryotic glyoxalase I that prefers the divalent cation zinc as cofactor. Glyoxalase I (also known as lactoylglutathione lyase; EC 4.4.1.5) is part of the glyoxalase system, a two-step system for detoxifying methylglyoxal, a side product of glycolysis. This system is responsible for the conversion of reactive, acyclic alpha-oxoaldehydes into the corresponding alpha-hydroxyacids and involves 2 enzymes, glyoxalase I and II. Glyoxalase I catalyses an intramolecular redox reaction of the hemithioacetal (formed from methylglyoxal and glutathione) to form the thioester, S-D-lactoylglutathione. This reaction involves the transfer of two hydrogen atoms from C1 to C2 of the methylglyoxal, and proceeds via an ene-diol intermediate. Glyoxalase I has a requirement for bound metal ions for catalysis. Eukaryotic glyoxalase I prefers the divalent cation zinc as cofactor, whereas Escherichia coil and other prokaryotic glyoxalase I uses nickel. However, eukaryotic Trypanosomatid parasites also use nickel as a cofactor, which could possibly be explained by acquiring their GLOI gene by horizontal gene transfer. Human glyoxalase I is a two-domain enzyme and it has the structure of a domain-swapped dimer with two active sites located at the dimer interface. In yeast, in various plants, insects and Plasmodia, glyoxalase I is four-domain, possibly the result of a further gene duplication and an additional gene fusing event. Pssm-ID: 319900 [Multi-domain] Cd Length: 142 Bit Score: 252.25 E-value: 2.11e-87
|
|||||||
glyox_I | TIGR00068 | lactoylglutathione lyase; Lactoylglutathione lyase is also known as aldoketomutase and ... |
14-163 | 3.76e-62 | |||
lactoylglutathione lyase; Lactoylglutathione lyase is also known as aldoketomutase and glyoxalase I. Glyoxylase I is a homodimer in many species. In some eukaryotes, including yeasts and plants, the orthologous protein carries a tandem duplication, is twice as long, and hits this model twice. [Central intermediary metabolism, Amino sugars, Energy metabolism, Other] Pssm-ID: 272886 Cd Length: 150 Bit Score: 188.86 E-value: 3.76e-62
|
|||||||
GloA | COG0346 | Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary ... |
23-167 | 3.83e-27 | |||
Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440115 [Multi-domain] Cd Length: 125 Bit Score: 98.91 E-value: 3.83e-27
|
|||||||
Glyoxalase | pfam00903 | Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; |
22-162 | 3.29e-24 | |||
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; Pssm-ID: 395724 [Multi-domain] Cd Length: 121 Bit Score: 91.36 E-value: 3.29e-24
|
|||||||
Name | Accession | Description | Interval | E-value | |||
PLN03042 | PLN03042 | Lactoylglutathione lyase; Provisional |
14-172 | 2.67e-93 | |||
Lactoylglutathione lyase; Provisional Pssm-ID: 215548 Cd Length: 185 Bit Score: 269.00 E-value: 2.67e-93
|
|||||||
GlxI_Zn | cd07233 | Glyoxalase I that uses Zn(++) as cofactor; This family includes eukaryotic glyoxalase I that ... |
20-163 | 2.11e-87 | |||
Glyoxalase I that uses Zn(++) as cofactor; This family includes eukaryotic glyoxalase I that prefers the divalent cation zinc as cofactor. Glyoxalase I (also known as lactoylglutathione lyase; EC 4.4.1.5) is part of the glyoxalase system, a two-step system for detoxifying methylglyoxal, a side product of glycolysis. This system is responsible for the conversion of reactive, acyclic alpha-oxoaldehydes into the corresponding alpha-hydroxyacids and involves 2 enzymes, glyoxalase I and II. Glyoxalase I catalyses an intramolecular redox reaction of the hemithioacetal (formed from methylglyoxal and glutathione) to form the thioester, S-D-lactoylglutathione. This reaction involves the transfer of two hydrogen atoms from C1 to C2 of the methylglyoxal, and proceeds via an ene-diol intermediate. Glyoxalase I has a requirement for bound metal ions for catalysis. Eukaryotic glyoxalase I prefers the divalent cation zinc as cofactor, whereas Escherichia coil and other prokaryotic glyoxalase I uses nickel. However, eukaryotic Trypanosomatid parasites also use nickel as a cofactor, which could possibly be explained by acquiring their GLOI gene by horizontal gene transfer. Human glyoxalase I is a two-domain enzyme and it has the structure of a domain-swapped dimer with two active sites located at the dimer interface. In yeast, in various plants, insects and Plasmodia, glyoxalase I is four-domain, possibly the result of a further gene duplication and an additional gene fusing event. Pssm-ID: 319900 [Multi-domain] Cd Length: 142 Bit Score: 252.25 E-value: 2.11e-87
|
|||||||
PLN02367 | PLN02367 | lactoylglutathione lyase |
12-168 | 2.60e-87 | |||
lactoylglutathione lyase Pssm-ID: 177995 Cd Length: 233 Bit Score: 255.69 E-value: 2.60e-87
|
|||||||
glyox_I | TIGR00068 | lactoylglutathione lyase; Lactoylglutathione lyase is also known as aldoketomutase and ... |
14-163 | 3.76e-62 | |||
lactoylglutathione lyase; Lactoylglutathione lyase is also known as aldoketomutase and glyoxalase I. Glyoxylase I is a homodimer in many species. In some eukaryotes, including yeasts and plants, the orthologous protein carries a tandem duplication, is twice as long, and hits this model twice. [Central intermediary metabolism, Amino sugars, Energy metabolism, Other] Pssm-ID: 272886 Cd Length: 150 Bit Score: 188.86 E-value: 3.76e-62
|
|||||||
GlxI_Ni | cd16358 | Glyoxalase I that uses Ni(++) as cofactor; This family includes Escherichia coil and other ... |
20-163 | 1.35e-37 | |||
Glyoxalase I that uses Ni(++) as cofactor; This family includes Escherichia coil and other prokaryotic glyoxalase I that uses nickel as cofactor. Glyoxalase I (also known as lactoylglutathione lyase; EC 4.4.1.5) is part of the glyoxalase system, a two-step system for detoxifying methylglyoxal, a side product of glycolysis. This system is responsible for the conversion of reactive, acyclic alpha-oxoaldehydes into the corresponding alpha-hydroxyacids and involves 2 enzymes, glyoxalase I and II. Glyoxalase I catalyses an intramolecular redox reaction of the hemithioacetal (formed from methylglyoxal and glutathione) to form the thioester, S-D-lactoylglutathione. This reaction involves the transfer of two hydrogen atoms from C1 to C2 of the methylglyoxal, and proceeds via an ene-diol intermediate. Glyoxalase I has a requirement for bound metal ions for catalysis. Eukaryotic glyoxalase I prefers the divalent cation zinc as cofactor, whereas Escherichia coil and other prokaryotic glyoxalase I uses nickel. However, eukaryotic Trypanosomatid parasites also use nickel as a cofactor, which could possibly be explained by acquiring their GLOI gene by horizontal gene transfer. Human glyoxalase I is a two-domain enzyme and it has the structure of a domain-swapped dimer with two active sites located at the dimer interface. In yeast, in various plants, insects and Plasmodia, glyoxalase I is four-domain, possibly the result of a further gene duplication and an additional gene fusing event. Pssm-ID: 319965 [Multi-domain] Cd Length: 122 Bit Score: 125.59 E-value: 1.35e-37
|
|||||||
GloA | COG0346 | Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary ... |
23-167 | 3.83e-27 | |||
Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440115 [Multi-domain] Cd Length: 125 Bit Score: 98.91 E-value: 3.83e-27
|
|||||||
Glyoxalase | pfam00903 | Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; |
22-162 | 3.29e-24 | |||
Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; Pssm-ID: 395724 [Multi-domain] Cd Length: 121 Bit Score: 91.36 E-value: 3.29e-24
|
|||||||
PRK10291 | PRK10291 | glyoxalase I; Provisional |
24-166 | 2.42e-23 | |||
glyoxalase I; Provisional Pssm-ID: 182358 Cd Length: 129 Bit Score: 89.31 E-value: 2.42e-23
|
|||||||
PLN02300 | PLN02300 | lactoylglutathione lyase |
20-170 | 4.22e-19 | |||
lactoylglutathione lyase Pssm-ID: 215169 [Multi-domain] Cd Length: 286 Bit Score: 81.75 E-value: 4.22e-19
|
|||||||
PLN02300 | PLN02300 | lactoylglutathione lyase |
22-158 | 1.28e-14 | |||
lactoylglutathione lyase Pssm-ID: 215169 [Multi-domain] Cd Length: 286 Bit Score: 69.81 E-value: 1.28e-14
|
|||||||
VOC | cd06587 | vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed ... |
23-162 | 1.32e-11 | |||
vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). Type I extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into aromatic substrates, which results in the cleavage of aromatic rings. They are key enzymes in the degradation of aromatic compounds. Type I extradiol dioxygenases include class I and class II enzymes. Class I and II enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. Glyoxylase I catalyzes the glutathione-dependent inactivation of toxic methylglyoxal, requiring zinc or nickel ions for activity. The antibiotic resistance proteins in this family use a variety of mechanisms to block the function of antibiotics. Bleomycin resistance protein (BLMA) sequesters bleomycin's activity by directly binding to it. Whereas, three types of fosfomycin resistance proteins employ different mechanisms to render fosfomycin inactive by modifying the fosfomycin molecule. Although the proteins in this superfamily are functionally distinct, their structures are similar. The difference among the three dimensional structures of the three types of proteins in this superfamily is interesting from an evolutionary perspective. Both glyoxalase I and BLMA show domain swapping between subunits. However, there is no domain swapping for type 1 extradiol dioxygenases. Pssm-ID: 319898 [Multi-domain] Cd Length: 112 Bit Score: 58.31 E-value: 1.32e-11
|
|||||||
CatE | COG2514 | Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; |
25-162 | 2.71e-07 | |||
Catechol-2,3-dioxygenase [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 442004 [Multi-domain] Cd Length: 141 Bit Score: 47.26 E-value: 2.71e-07
|
|||||||
VOC | COG3324 | Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function ... |
25-167 | 3.82e-06 | |||
Lactoylglutathione lyase-related enzyme, vicinal oxygen chelate (VOC) family [General function prediction only]; Pssm-ID: 442553 [Multi-domain] Cd Length: 119 Bit Score: 43.86 E-value: 3.82e-06
|
|||||||
VOC_like | cd07245 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
25-162 | 2.04e-05 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319909 [Multi-domain] Cd Length: 117 Bit Score: 41.92 E-value: 2.04e-05
|
|||||||
VOC_like | cd07264 | uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate ... |
22-165 | 1.92e-04 | |||
uncharacterized subfamily of vicinal oxygen chelate (VOC) family; The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319925 [Multi-domain] Cd Length: 118 Bit Score: 39.24 E-value: 1.92e-04
|
|||||||
PcpA_N_like | cd08346 | N-terminal domain of Sphingobium chlorophenolicum 2,6-dichloro-p-hydroquinone 1,2-dioxygenase ... |
27-157 | 1.46e-03 | |||
N-terminal domain of Sphingobium chlorophenolicum 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA), and similar proteins; The N-terminal domain of Sphingobium chlorophenolicum (formerly Sphingomonas chlorophenolica) 2,6-dichloro-p-hydroquinone1,2-dioxygenase (PcpA), and similar proteins. PcpA is a key enzyme in the pentachlorophenol (PCP) degradation pathway, catalyzing the conversion of 2,6-dichloro-p-hydroquinone to 2-chloromaleylacetate. This domain belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. Pssm-ID: 319934 Cd Length: 124 Bit Score: 36.88 E-value: 1.46e-03
|
|||||||
BphC1-RGP6_C_like | cd07237 | C-terminal domain of 2,3-dihydroxybiphenyl 1,2-dioxygenase; This subfamily contains the ... |
25-62 | 3.85e-03 | |||
C-terminal domain of 2,3-dihydroxybiphenyl 1,2-dioxygenase; This subfamily contains the C-terminal, catalytic, domain of BphC1-RGP6 and similar proteins. BphC catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). This subfamily of BphCs belongs to the type I extradiol dioxygenase family, which require a metal in the active site in its catalytic mechanism. Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of BphCs. For example, three types of BphC enzymes have been found in Rhodococcus globerulus (BphC1-RGP6 - BphC3-RGP6), all three enzymes are type I extradiol dioxygenases. BphC1-RGP6 has an internal duplication, it is a two-domain dioxygenase which forms octamers, and has Fe(II) at the catalytic site. Its C-terminal repeat is represented in this subfamily. BphC2-RGP6 and BphC3-RGP6 are one-domain dioxygenases, they belong to a different subfamily of the ED_TypeI_classII_C (C-terminal domain of type I, class II extradiol dioxygenases) family. Pssm-ID: 319902 Cd Length: 153 Bit Score: 36.10 E-value: 3.85e-03
|
|||||||
GloA | COG0346 | Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary ... |
111-167 | 6.13e-03 | |||
Catechol 2,3-dioxygenase or related enzyme, vicinal oxygen chelate (VOC) family [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440115 [Multi-domain] Cd Length: 125 Bit Score: 34.97 E-value: 6.13e-03
|
|||||||
GLOD4_N | cd08358 | N-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins; ... |
25-158 | 8.48e-03 | |||
N-terminal domain of human glyoxalase domain-containing protein 4 and similar proteins; Uncharacterized subfamily of the vicinal oxygen chelate (VOC) superfamily contains human glyoxalase domain-containing protein 4 and similar proteins. VOC is composed of structurally related proteins with paired beta.alpha.beta.beta.beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. VOC domain is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping. Pssm-ID: 319946 Cd Length: 127 Bit Score: 34.65 E-value: 8.48e-03
|
|||||||
Blast search parameters | ||||
|