Exonuclease C-terminal; This bacterial domain is found at the C-terminus of ...
211-472
1.61e-136
Exonuclease C-terminal; This bacterial domain is found at the C-terminus of Exodeoxyribonuclease I/Exonuclease I (pfam00929), which is a single-strand specific DNA nuclease affecting recombination and expression pathways. The exonuclease I protein in E. coli is associated with DNA deoxyribophosphodiesterase (dRPase).
Pssm-ID: 429982 Cd Length: 267 Bit Score: 393.83 E-value: 1.61e-136
N-terminal DEDDh 3'-5' exonuclease domain of Escherichia coli exonuclease I and similar ...
11-194
7.18e-112
N-terminal DEDDh 3'-5' exonuclease domain of Escherichia coli exonuclease I and similar proteins; This subfamily is composed of the N-terminal domain of Escherichia coli exonuclease I (ExoI) and similar proteins. ExoI is a monomeric enzyme that hydrolyzes single stranded DNA in the 3' to 5' direction. It plays a role in DNA recombination and repair. It primarily functions in repairing frameshift mutations. The N-terminal domain of ExoI is a DEDDh-type DnaQ-like 3'-5 exonuclease containing three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. The ExoI structure is unique among DnaQ family enzymes in that there is a large distance between the two metal ions required for catalysis and the catalytic histidine is oriented away from the active site.
Pssm-ID: 99841 [Multi-domain] Cd Length: 183 Bit Score: 327.68 E-value: 7.18e-112
Exonuclease C-terminal; This bacterial domain is found at the C-terminus of ...
211-472
1.61e-136
Exonuclease C-terminal; This bacterial domain is found at the C-terminus of Exodeoxyribonuclease I/Exonuclease I (pfam00929), which is a single-strand specific DNA nuclease affecting recombination and expression pathways. The exonuclease I protein in E. coli is associated with DNA deoxyribophosphodiesterase (dRPase).
Pssm-ID: 429982 Cd Length: 267 Bit Score: 393.83 E-value: 1.61e-136
N-terminal DEDDh 3'-5' exonuclease domain of Escherichia coli exonuclease I and similar ...
11-194
7.18e-112
N-terminal DEDDh 3'-5' exonuclease domain of Escherichia coli exonuclease I and similar proteins; This subfamily is composed of the N-terminal domain of Escherichia coli exonuclease I (ExoI) and similar proteins. ExoI is a monomeric enzyme that hydrolyzes single stranded DNA in the 3' to 5' direction. It plays a role in DNA recombination and repair. It primarily functions in repairing frameshift mutations. The N-terminal domain of ExoI is a DEDDh-type DnaQ-like 3'-5 exonuclease containing three conserved sequence motifs termed ExoI, ExoII and ExoIII, with a specific Hx(4)D conserved pattern at ExoIII. These motifs are clustered around the active site and contain four conserved acidic residues that serve as ligands for the two metal ions required for catalysis. The ExoI structure is unique among DnaQ family enzymes in that there is a large distance between the two metal ions required for catalysis and the catalytic histidine is oriented away from the active site.
Pssm-ID: 99841 [Multi-domain] Cd Length: 183 Bit Score: 327.68 E-value: 7.18e-112
DEDDh 3'-5' exonuclease domain family; DEDDh exonucleases, part of the DnaQ-like (or DEDD) ...
12-197
3.06e-14
DEDDh 3'-5' exonuclease domain family; DEDDh exonucleases, part of the DnaQ-like (or DEDD) exonuclease superfamily, catalyze the excision of nucleoside monophosphates at the DNA or RNA termini in the 3'-5' direction. These proteins contain four invariant acidic residues in three conserved sequence motifs termed ExoI, ExoII and ExoIII. DEDDh exonucleases are classified as such because of the presence of specific Hx(4)D conserved pattern at the ExoIII motif. The four conserved acidic residues are clustered around the active site and serve as ligands for the two metal ions required for catalysis. Most DEDDh exonucleases are the proofreading subunits (epsilon) or domains of bacterial DNA polymerase III, the main replicating enzyme in bacteria, which functions as the chromosomal replicase. Other members include other DNA and RNA exonucleases such as RNase T, Oligoribonuclease, and RNA exonuclease (REX), among others.
Pssm-ID: 176648 [Multi-domain] Cd Length: 159 Bit Score: 70.02 E-value: 3.06e-14
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options