MULTISPECIES: hypothetical protein [Empedobacter]
Rossmann-fold NAD(P)-binding domain-containing protein( domain architecture ID 229380)
Rossmann-fold NAD(P)-binding domain-containing protein may function as an oxidoreductase
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
NADB_Rossmann super family | cl21454 | Rossmann-fold NAD(P)(+)-binding proteins; A large family of proteins that share a ... |
5-231 | 3.26e-28 | |||||
Rossmann-fold NAD(P)(+)-binding proteins; A large family of proteins that share a Rossmann-fold NAD(P)H/NAD(P)(+) binding (NADB) domain. The NADB domain is found in numerous dehydrogenases of metabolic pathways such as glycolysis, and many other redox enzymes. NAD binding involves numerous hydrogen-bonds and van der Waals contacts, in particular H-bonding of residues in a turn between the first strand and the subsequent helix of the Rossmann-fold topology. Characteristically, this turn exhibits a consensus binding pattern similar to GXGXXG, in which the first 2 glycines participate in NAD(P)-binding, and the third facilitates close packing of the helix to the beta-strand. Typically, proteins in this family contain a second domain in addition to the NADB domain, which is responsible for specifically binding a substrate and catalyzing a particular enzymatic reaction. The actual alignment was detected with superfamily member cd05266: Pssm-ID: 473865 [Multi-domain] Cd Length: 251 Bit Score: 107.41 E-value: 3.26e-28
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
SDR_a4 | cd05266 | atypical (a) SDRs, subgroup 4; Atypical SDRs in this subgroup are poorly defined, one member ... |
5-231 | 3.26e-28 | |||||
atypical (a) SDRs, subgroup 4; Atypical SDRs in this subgroup are poorly defined, one member is identified as a putative NAD-dependent epimerase/dehydratase. Atypical SDRs are distinct from classical SDRs. Members of this subgroup have a glycine-rich NAD(P)-binding motif that is related to, but is different from, the archetypical SDRs, GXGXXG. This subgroup also lacks most of the characteristic active site residues of the SDRs; however, the upstream Ser is present at the usual place, and some potential catalytic residues are present in place of the usual YXXXK active site motif. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187576 [Multi-domain] Cd Length: 251 Bit Score: 107.41 E-value: 3.26e-28
|
|||||||||
WcaG | COG0451 | Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; |
90-239 | 6.31e-09 | |||||
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440220 [Multi-domain] Cd Length: 295 Bit Score: 55.37 E-value: 6.31e-09
|
|||||||||
yfcH | TIGR01777 | TIGR01777 family protein; This model represents a clade of proteins of unknown function ... |
91-202 | 9.95e-04 | |||||
TIGR01777 family protein; This model represents a clade of proteins of unknown function including the E. coli yfcH protein. [Hypothetical proteins, Conserved] Pssm-ID: 273800 [Multi-domain] Cd Length: 291 Bit Score: 39.55 E-value: 9.95e-04
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
SDR_a4 | cd05266 | atypical (a) SDRs, subgroup 4; Atypical SDRs in this subgroup are poorly defined, one member ... |
5-231 | 3.26e-28 | |||||
atypical (a) SDRs, subgroup 4; Atypical SDRs in this subgroup are poorly defined, one member is identified as a putative NAD-dependent epimerase/dehydratase. Atypical SDRs are distinct from classical SDRs. Members of this subgroup have a glycine-rich NAD(P)-binding motif that is related to, but is different from, the archetypical SDRs, GXGXXG. This subgroup also lacks most of the characteristic active site residues of the SDRs; however, the upstream Ser is present at the usual place, and some potential catalytic residues are present in place of the usual YXXXK active site motif. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187576 [Multi-domain] Cd Length: 251 Bit Score: 107.41 E-value: 3.26e-28
|
|||||||||
WcaG | COG0451 | Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; |
90-239 | 6.31e-09 | |||||
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440220 [Multi-domain] Cd Length: 295 Bit Score: 55.37 E-value: 6.31e-09
|
|||||||||
yfcH | TIGR01777 | TIGR01777 family protein; This model represents a clade of proteins of unknown function ... |
91-202 | 9.95e-04 | |||||
TIGR01777 family protein; This model represents a clade of proteins of unknown function including the E. coli yfcH protein. [Hypothetical proteins, Conserved] Pssm-ID: 273800 [Multi-domain] Cd Length: 291 Bit Score: 39.55 E-value: 9.95e-04
|
|||||||||
Blast search parameters | ||||
|