M1 family metallopeptidase such as aminopeptidase N, which is a type II integral membrane protease that preferentially cleaves neutral amino acids from the N-terminus of oligopeptides
Peptidase M1 family similar to aminopeptidase N catalytic domain; This family contains ...
65-569
6.15e-136
Peptidase M1 family similar to aminopeptidase N catalytic domain; This family contains bacterial M1 peptidases with smilarity to the catalytic domain of aminopeptidase N (APN; CD13; alanyl aminopeptidase; EC 3.4.11.2), a type II integral membrane protease belonging to the M1 gluzincin family. APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and, in higher eukaryotes, is present in a variety of human tissues and cell types (leukocyte, fibroblast, endothelial and epithelial cells). APN expression is dysregulated in inflammatory diseases such as chronic pain, rheumatoid arthritis, multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, polymyositis/dermatomyosytis and pulmonary sarcoidosis, and is enhanced in tumor cells such as melanoma, renal, prostate, pancreas, colon, gastric and thyroid cancers. It is predominantly expressed on stem cells and on cells of the granulocytic and monocytic lineages at distinct stages of differentiation, thus considered a marker of differentiation. Thus, APN inhibition may lead to the development of anti-cancer and anti-inflammatory drugs. APNs are also present in many pathogenic bacteria and represent potential drug targets. Some APNs have been used commercially, such as one from Lactococcus lactis used in the food industry. APN also serves as a receptor for coronaviruses, although the virus receptor interaction site seems to be distinct from the enzymatic site and aminopeptidase activity is not necessary for viral infection. APNs have also been extensively studied as putative Cry toxin receptors. Cry1 proteins are pore-forming toxins that bind to the midgut epithelial cell membrane of susceptible insect larvae, causing extensive damage. Several different toxins, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca and Cry1Fa, have been shown to bind to APNs; however, a direct role of APN in cytotoxicity has been yet to be firmly established.
:
Pssm-ID: 341067 [Multi-domain] Cd Length: 440 Bit Score: 408.20 E-value: 6.15e-136
Peptidase M1 family similar to aminopeptidase N catalytic domain; This family contains ...
65-569
6.15e-136
Peptidase M1 family similar to aminopeptidase N catalytic domain; This family contains bacterial M1 peptidases with smilarity to the catalytic domain of aminopeptidase N (APN; CD13; alanyl aminopeptidase; EC 3.4.11.2), a type II integral membrane protease belonging to the M1 gluzincin family. APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and, in higher eukaryotes, is present in a variety of human tissues and cell types (leukocyte, fibroblast, endothelial and epithelial cells). APN expression is dysregulated in inflammatory diseases such as chronic pain, rheumatoid arthritis, multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, polymyositis/dermatomyosytis and pulmonary sarcoidosis, and is enhanced in tumor cells such as melanoma, renal, prostate, pancreas, colon, gastric and thyroid cancers. It is predominantly expressed on stem cells and on cells of the granulocytic and monocytic lineages at distinct stages of differentiation, thus considered a marker of differentiation. Thus, APN inhibition may lead to the development of anti-cancer and anti-inflammatory drugs. APNs are also present in many pathogenic bacteria and represent potential drug targets. Some APNs have been used commercially, such as one from Lactococcus lactis used in the food industry. APN also serves as a receptor for coronaviruses, although the virus receptor interaction site seems to be distinct from the enzymatic site and aminopeptidase activity is not necessary for viral infection. APNs have also been extensively studied as putative Cry toxin receptors. Cry1 proteins are pore-forming toxins that bind to the midgut epithelial cell membrane of susceptible insect larvae, causing extensive damage. Several different toxins, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca and Cry1Fa, have been shown to bind to APNs; however, a direct role of APN in cytotoxicity has been yet to be firmly established.
Pssm-ID: 341067 [Multi-domain] Cd Length: 440 Bit Score: 408.20 E-value: 6.15e-136
Peptidase family M1 domain; Members of this family are aminopeptidases. The members differ ...
379-568
1.72e-12
Peptidase family M1 domain; Members of this family are aminopeptidases. The members differ widely in specificity, hydrolysing acidic, basic or neutral N-terminal residues. This family includes leukotriene-A4 hydrolase, this enzyme also has an aminopeptidase activity.
Pssm-ID: 426262 [Multi-domain] Cd Length: 219 Bit Score: 67.31 E-value: 1.72e-12
Peptidase M1 family similar to aminopeptidase N catalytic domain; This family contains ...
65-569
6.15e-136
Peptidase M1 family similar to aminopeptidase N catalytic domain; This family contains bacterial M1 peptidases with smilarity to the catalytic domain of aminopeptidase N (APN; CD13; alanyl aminopeptidase; EC 3.4.11.2), a type II integral membrane protease belonging to the M1 gluzincin family. APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and, in higher eukaryotes, is present in a variety of human tissues and cell types (leukocyte, fibroblast, endothelial and epithelial cells). APN expression is dysregulated in inflammatory diseases such as chronic pain, rheumatoid arthritis, multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, polymyositis/dermatomyosytis and pulmonary sarcoidosis, and is enhanced in tumor cells such as melanoma, renal, prostate, pancreas, colon, gastric and thyroid cancers. It is predominantly expressed on stem cells and on cells of the granulocytic and monocytic lineages at distinct stages of differentiation, thus considered a marker of differentiation. Thus, APN inhibition may lead to the development of anti-cancer and anti-inflammatory drugs. APNs are also present in many pathogenic bacteria and represent potential drug targets. Some APNs have been used commercially, such as one from Lactococcus lactis used in the food industry. APN also serves as a receptor for coronaviruses, although the virus receptor interaction site seems to be distinct from the enzymatic site and aminopeptidase activity is not necessary for viral infection. APNs have also been extensively studied as putative Cry toxin receptors. Cry1 proteins are pore-forming toxins that bind to the midgut epithelial cell membrane of susceptible insect larvae, causing extensive damage. Several different toxins, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca and Cry1Fa, have been shown to bind to APNs; however, a direct role of APN in cytotoxicity has been yet to be firmly established.
Pssm-ID: 341067 [Multi-domain] Cd Length: 440 Bit Score: 408.20 E-value: 6.15e-136
Peptidase M1 family similar to aminopeptidase N catalytic domain; This family contains mostly ...
65-570
2.06e-15
Peptidase M1 family similar to aminopeptidase N catalytic domain; This family contains mostly bacterial and some archaeal M1 peptidases with smilarity to the catalytic domain of aminopeptidase N (APN; CD13; alanyl aminopeptidase; EC 3.4.11.2), a type II integral membrane protease belonging to the M1 gluzincin family. APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and, in higher eukaryotes, is present in a variety of human tissues and cell types (leukocyte, fibroblast, endothelial and epithelial cells). APN expression is dysregulated in inflammatory diseases such as chronic pain, rheumatoid arthritis, multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, polymyositis/dermatomyosytis and pulmonary sarcoidosis, and is enhanced in tumor cells such as melanoma, renal, prostate, pancreas, colon, gastric and thyroid cancers. It is predominantly expressed on stem cells and on cells of the granulocytic and monocytic lineages at distinct stages of differentiation, thus considered a marker of differentiation. Thus, APN inhibition may lead to the development of anti-cancer and anti-inflammatory drugs. APNs are also present in many pathogenic bacteria and represent potential drug targets. Some APNs have been used commercially, such as one from Lactococcus lactis used in the food industry. APN also serves as a receptor for coronaviruses, although the virus receptor interaction site seems to be distinct from the enzymatic site and aminopeptidase activity is not necessary for viral infection. APNs have also been extensively studied as putative Cry toxin receptors. Cry1 proteins are pore-forming toxins that bind to the midgut epithelial cell membrane of susceptible insect larvae, causing extensive damage. Several different toxins, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca and Cry1Fa, have been shown to bind to APNs; however, a direct role of APN in cytotoxicity has been yet to be firmly established.
Pssm-ID: 341066 [Multi-domain] Cd Length: 410 Bit Score: 79.17 E-value: 2.06e-15
Peptidase M1 family includes the catalytic domains of aminopeptidase N and leukotriene A4 ...
379-555
9.43e-13
Peptidase M1 family includes the catalytic domains of aminopeptidase N and leukotriene A4 hydrolase; The model represents the catalytic domains of M1 peptidase family members including aminopeptidase N (APN) and leukotriene A4 hydrolase (LTA4H). All peptidases in this family bind a single catalytic zinc ion which is tetrahedrally co-ordinated by three amino acid ligands and a water molecule that forms the nucleophile upon activation during catalysis. APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and is present in a variety of human tissues and cell types. APN expression is dysregulated in many inflammatory diseases and is enhanced in numerous tumor cells, making it a lead target in the development of anti-cancer and anti-inflammatory drugs. LTA4H is a bifunctional enzyme, possessing an aminopeptidase as well as an epoxide hydrolase activity. The two activities occupy different, but overlapping sites. The activity and physiological relevance of the aminopeptidase in LTA4H is as yet unknown, while the epoxide hydrolase converts leukotriene A4 (LTA4) into leukotriene B4 (LTB4), a potent chemotaxin that is fundamental to the inflammatory response of mammals.
Pssm-ID: 341058 [Multi-domain] Cd Length: 413 Bit Score: 70.94 E-value: 9.43e-13
Peptidase family M1 domain; Members of this family are aminopeptidases. The members differ ...
379-568
1.72e-12
Peptidase family M1 domain; Members of this family are aminopeptidases. The members differ widely in specificity, hydrolysing acidic, basic or neutral N-terminal residues. This family includes leukotriene-A4 hydrolase, this enzyme also has an aminopeptidase activity.
Pssm-ID: 426262 [Multi-domain] Cd Length: 219 Bit Score: 67.31 E-value: 1.72e-12
Peptidase M1 family, including aminopeptidase N catalytic domain; This model represents the ...
520-570
2.17e-03
Peptidase M1 family, including aminopeptidase N catalytic domain; This model represents the catalytic domain of aminopeptidase N (APN; CD13; alanyl aminopeptidase; EC 3.4.11.2), a type II integral membrane protease belonging to the M1 gluzincin family. It includes bacterial-type alanyl aminopeptidases as well as PfA-M1 aminopeptidase (Plasmodium falciparum-type). APN preferentially cleaves neutral amino acids from the N-terminus of oligopeptides and, in higher eukaryotes, is present in a variety of human tissues and cell types (leukocyte, fibroblast, endothelial and epithelial cells). APN expression is dysregulated in inflammatory diseases such as chronic pain, rheumatoid arthritis, multiple sclerosis, systemic sclerosis, systemic lupus erythematosus, polymyositis/dermatomyosytis and pulmonary sarcoidosis, and is enhanced in tumor cells such as melanoma, renal, prostate, pancreas, colon, gastric and thyroid cancers. It is predominantly expressed on stem cells and on cells of the granulocytic and monocytic lineages at distinct stages of differentiation, thus considered a marker of differentiation. Thus, APN inhibition may lead to the development of anti-cancer and anti-inflammatory drugs. APNs are also present in many pathogenic bacteria and represent potential drug targets. Some APNs have been used commercially, such as one from Lactococcus lactis used in the food industry. APN also serves as a receptor for coronaviruses, although the virus receptor interaction site seems to be distinct from the enzymatic site and aminopeptidase activity is not necessary for viral infection. APNs have also been extensively studied as putative Cry toxin receptors. Cry1 proteins are pore-forming toxins that bind to the midgut epithelial cell membrane of susceptible insect larvae, causing extensive damage. Several different toxins, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca and Cry1Fa, have been shown to bind to APNs; however, a direct role of APN in cytotoxicity has been yet to be firmly established.
Pssm-ID: 341063 [Multi-domain] Cd Length: 434 Bit Score: 41.35 E-value: 2.17e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options