diguanylate cyclase [Aliarcobacter skirrowii]
CBS_pair and GGDEF domain-containing protein( domain architecture ID 10115349)
CBS_pair and GGDEF domain-containing protein
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
GGDEF | COG2199 | GGDEF domain, diguanylate cyclase (c-di-GMP synthetase) or its enzymatically inactive variants ... |
273-443 | 5.86e-65 | ||||
GGDEF domain, diguanylate cyclase (c-di-GMP synthetase) or its enzymatically inactive variants [Signal transduction mechanisms]; : Pssm-ID: 441801 [Multi-domain] Cd Length: 275 Bit Score: 209.83 E-value: 5.86e-65
|
||||||||
COG2524 | COG2524 | Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; |
128-250 | 1.36e-14 | ||||
Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; : Pssm-ID: 442013 [Multi-domain] Cd Length: 206 Bit Score: 72.22 E-value: 1.36e-14
|
||||||||
CBS_pair_SF | cd02205 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS ... |
12-121 | 1.34e-11 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). : Pssm-ID: 341358 [Multi-domain] Cd Length: 113 Bit Score: 61.11 E-value: 1.34e-11
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
GGDEF | COG2199 | GGDEF domain, diguanylate cyclase (c-di-GMP synthetase) or its enzymatically inactive variants ... |
273-443 | 5.86e-65 | ||||
GGDEF domain, diguanylate cyclase (c-di-GMP synthetase) or its enzymatically inactive variants [Signal transduction mechanisms]; Pssm-ID: 441801 [Multi-domain] Cd Length: 275 Bit Score: 209.83 E-value: 5.86e-65
|
||||||||
GGDEF | cd01949 | Diguanylate-cyclase (DGC) or GGDEF domain; Diguanylate-cyclase (DGC) or GGDEF domain: ... |
288-441 | 3.31e-60 | ||||
Diguanylate-cyclase (DGC) or GGDEF domain; Diguanylate-cyclase (DGC) or GGDEF domain: Originally named after a conserved residue pattern, and initially described as a domain of unknown function 1 (DUF1). This domain is widely present in bacteria, linked to a wide range of non-homologous domains in a variety of cell signaling proteins. The domain shows homology to the adenylyl cyclase catalytic domain. This correlates with the functional information available on two GGDEF-containing proteins, namely diguanylate cyclase and phosphodiesterase A of Acetobacter xylinum, both of which regulate the turnover of cyclic diguanosine monophosphate. Together with the EAL domain, GGDEF might be involved in regulating cell surface adhesion in bacteria. Pssm-ID: 143635 [Multi-domain] Cd Length: 158 Bit Score: 193.54 E-value: 3.31e-60
|
||||||||
GGDEF | pfam00990 | Diguanylate cyclase, GGDEF domain; This domain is found linked to a wide range of ... |
286-440 | 3.21e-52 | ||||
Diguanylate cyclase, GGDEF domain; This domain is found linked to a wide range of non-homologous domains in a variety of bacteria. It has been shown to be homologous to the adenylyl cyclase catalytic domain and has diguanylate cyclase activity. This observation correlates with the functional information available on two GGDEF-containing proteins, namely diguanylate cyclase and phosphodiesterase A of Acetobacter xylinum, both of which regulate the turnover of cyclic diguanosine monophosphate. In the WspR protein of Pseudomonas aeruginosa, the GGDEF domain acts as a diguanylate cyclase, PDB:3bre, when the whole molecule appears to form a tetramer consisting of two symmetrically-related dimers representing a biological unit. The active site is the GGD/EF motif, buried in the structure, and the cyclic dimeric guanosine monophosphate (c-di-GMP) bind to the inhibitory-motif RxxD on the surface. The enzyme thus catalyzes the cyclization of two guanosine triphosphate (GTP) molecules to one c-di-GMP molecule. Pssm-ID: 425976 [Multi-domain] Cd Length: 160 Bit Score: 172.82 E-value: 3.21e-52
|
||||||||
GGDEF | TIGR00254 | diguanylate cyclase (GGDEF) domain; The GGDEF domain is named for the motif GG[DE]EF shared by ... |
285-442 | 5.18e-49 | ||||
diguanylate cyclase (GGDEF) domain; The GGDEF domain is named for the motif GG[DE]EF shared by many proteins carrying the domain. There is evidence that the domain has diguanylate cyclase activity. Several proteins carrying this domain also carry domains with functions relating to environmental sensing. These include PleD, a response regulator protein involved in the swarmer-to-stalked cell transition in Caulobacter crescentus, and FixL, a heme-containing oxygen sensor protein. [Regulatory functions, Small molecule interactions, Signal transduction, Other] Pssm-ID: 272984 [Multi-domain] Cd Length: 165 Bit Score: 164.82 E-value: 5.18e-49
|
||||||||
GGDEF | smart00267 | diguanylate cyclase; Diguanylate cyclase, present in a variety of bacteria. |
284-443 | 1.42e-46 | ||||
diguanylate cyclase; Diguanylate cyclase, present in a variety of bacteria. Pssm-ID: 128563 [Multi-domain] Cd Length: 163 Bit Score: 158.18 E-value: 1.42e-46
|
||||||||
pleD | PRK09581 | response regulator PleD; Reviewed |
244-441 | 4.13e-46 | ||||
response regulator PleD; Reviewed Pssm-ID: 236577 [Multi-domain] Cd Length: 457 Bit Score: 165.46 E-value: 4.13e-46
|
||||||||
diguan_SiaD | NF038266 | biofilm regulation diguanylate cyclase SiaD; |
243-441 | 8.88e-42 | ||||
biofilm regulation diguanylate cyclase SiaD; Pssm-ID: 468439 [Multi-domain] Cd Length: 252 Bit Score: 148.59 E-value: 8.88e-42
|
||||||||
COG2524 | COG2524 | Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; |
128-250 | 1.36e-14 | ||||
Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; Pssm-ID: 442013 [Multi-domain] Cd Length: 206 Bit Score: 72.22 E-value: 1.36e-14
|
||||||||
CBS_pair_SF | cd02205 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS ... |
144-251 | 1.44e-14 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341358 [Multi-domain] Cd Length: 113 Bit Score: 69.58 E-value: 1.44e-14
|
||||||||
CBS_pair_SF | cd02205 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS ... |
12-121 | 1.34e-11 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341358 [Multi-domain] Cd Length: 113 Bit Score: 61.11 E-value: 1.34e-11
|
||||||||
YtoI | COG4109 | Predicted transcriptional regulator containing CBS domains [Transcription]; |
15-123 | 8.04e-11 | ||||
Predicted transcriptional regulator containing CBS domains [Transcription]; Pssm-ID: 443285 [Multi-domain] Cd Length: 135 Bit Score: 59.54 E-value: 8.04e-11
|
||||||||
IMPDH | pfam00478 | IMP dehydrogenase / GMP reductase domain; This family is involved in biosynthesis of guanosine ... |
154-252 | 1.20e-08 | ||||
IMP dehydrogenase / GMP reductase domain; This family is involved in biosynthesis of guanosine nucleotide. Members of this family contain a TIM barrel structure. In the inosine monophosphate dehydrogenases 2 CBS domains pfam00571 are inserted in the TIM barrel. This family is a member of the common phosphate binding site TIM barrel family. Pssm-ID: 459826 [Multi-domain] Cd Length: 463 Bit Score: 57.01 E-value: 1.20e-08
|
||||||||
CBS | pfam00571 | CBS domain; CBS domains are small intracellular modules that pair together to form a stable ... |
9-60 | 2.96e-04 | ||||
CBS domain; CBS domains are small intracellular modules that pair together to form a stable globular domain. This family represents a single CBS domain. Pairs of these domains have been termed a Bateman domain. CBS domains have been shown to bind ligands with an adenosyl group such as AMP, ATP and S-AdoMet. CBS domains are found attached to a wide range of other protein domains suggesting that CBS domains may play a regulatory role making proteins sensitive to adenosyl carrying ligands. The region containing the CBS domains in Cystathionine-beta synthase is involved in regulation by S-AdoMet. CBS domain pairs from AMPK bind AMP or ATP. The CBS domains from IMPDH and the chloride channel CLC2 bind ATP. Pssm-ID: 425756 [Multi-domain] Cd Length: 57 Bit Score: 38.73 E-value: 2.96e-04
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
GGDEF | COG2199 | GGDEF domain, diguanylate cyclase (c-di-GMP synthetase) or its enzymatically inactive variants ... |
273-443 | 5.86e-65 | ||||
GGDEF domain, diguanylate cyclase (c-di-GMP synthetase) or its enzymatically inactive variants [Signal transduction mechanisms]; Pssm-ID: 441801 [Multi-domain] Cd Length: 275 Bit Score: 209.83 E-value: 5.86e-65
|
||||||||
GGDEF | cd01949 | Diguanylate-cyclase (DGC) or GGDEF domain; Diguanylate-cyclase (DGC) or GGDEF domain: ... |
288-441 | 3.31e-60 | ||||
Diguanylate-cyclase (DGC) or GGDEF domain; Diguanylate-cyclase (DGC) or GGDEF domain: Originally named after a conserved residue pattern, and initially described as a domain of unknown function 1 (DUF1). This domain is widely present in bacteria, linked to a wide range of non-homologous domains in a variety of cell signaling proteins. The domain shows homology to the adenylyl cyclase catalytic domain. This correlates with the functional information available on two GGDEF-containing proteins, namely diguanylate cyclase and phosphodiesterase A of Acetobacter xylinum, both of which regulate the turnover of cyclic diguanosine monophosphate. Together with the EAL domain, GGDEF might be involved in regulating cell surface adhesion in bacteria. Pssm-ID: 143635 [Multi-domain] Cd Length: 158 Bit Score: 193.54 E-value: 3.31e-60
|
||||||||
GGDEF | pfam00990 | Diguanylate cyclase, GGDEF domain; This domain is found linked to a wide range of ... |
286-440 | 3.21e-52 | ||||
Diguanylate cyclase, GGDEF domain; This domain is found linked to a wide range of non-homologous domains in a variety of bacteria. It has been shown to be homologous to the adenylyl cyclase catalytic domain and has diguanylate cyclase activity. This observation correlates with the functional information available on two GGDEF-containing proteins, namely diguanylate cyclase and phosphodiesterase A of Acetobacter xylinum, both of which regulate the turnover of cyclic diguanosine monophosphate. In the WspR protein of Pseudomonas aeruginosa, the GGDEF domain acts as a diguanylate cyclase, PDB:3bre, when the whole molecule appears to form a tetramer consisting of two symmetrically-related dimers representing a biological unit. The active site is the GGD/EF motif, buried in the structure, and the cyclic dimeric guanosine monophosphate (c-di-GMP) bind to the inhibitory-motif RxxD on the surface. The enzyme thus catalyzes the cyclization of two guanosine triphosphate (GTP) molecules to one c-di-GMP molecule. Pssm-ID: 425976 [Multi-domain] Cd Length: 160 Bit Score: 172.82 E-value: 3.21e-52
|
||||||||
GGDEF | TIGR00254 | diguanylate cyclase (GGDEF) domain; The GGDEF domain is named for the motif GG[DE]EF shared by ... |
285-442 | 5.18e-49 | ||||
diguanylate cyclase (GGDEF) domain; The GGDEF domain is named for the motif GG[DE]EF shared by many proteins carrying the domain. There is evidence that the domain has diguanylate cyclase activity. Several proteins carrying this domain also carry domains with functions relating to environmental sensing. These include PleD, a response regulator protein involved in the swarmer-to-stalked cell transition in Caulobacter crescentus, and FixL, a heme-containing oxygen sensor protein. [Regulatory functions, Small molecule interactions, Signal transduction, Other] Pssm-ID: 272984 [Multi-domain] Cd Length: 165 Bit Score: 164.82 E-value: 5.18e-49
|
||||||||
GGDEF | smart00267 | diguanylate cyclase; Diguanylate cyclase, present in a variety of bacteria. |
284-443 | 1.42e-46 | ||||
diguanylate cyclase; Diguanylate cyclase, present in a variety of bacteria. Pssm-ID: 128563 [Multi-domain] Cd Length: 163 Bit Score: 158.18 E-value: 1.42e-46
|
||||||||
pleD | PRK09581 | response regulator PleD; Reviewed |
244-441 | 4.13e-46 | ||||
response regulator PleD; Reviewed Pssm-ID: 236577 [Multi-domain] Cd Length: 457 Bit Score: 165.46 E-value: 4.13e-46
|
||||||||
COG5001 | COG5001 | Cyclic di-GMP metabolism protein, combines GGDEF and EAL domains with a 6TM membrane domain ... |
257-443 | 5.48e-42 | ||||
Cyclic di-GMP metabolism protein, combines GGDEF and EAL domains with a 6TM membrane domain [Signal transduction mechanisms]; Pssm-ID: 444025 [Multi-domain] Cd Length: 678 Bit Score: 157.63 E-value: 5.48e-42
|
||||||||
diguan_SiaD | NF038266 | biofilm regulation diguanylate cyclase SiaD; |
243-441 | 8.88e-42 | ||||
biofilm regulation diguanylate cyclase SiaD; Pssm-ID: 468439 [Multi-domain] Cd Length: 252 Bit Score: 148.59 E-value: 8.88e-42
|
||||||||
PRK09894 | PRK09894 | diguanylate cyclase; Provisional |
282-441 | 3.78e-40 | ||||
diguanylate cyclase; Provisional Pssm-ID: 182133 [Multi-domain] Cd Length: 296 Bit Score: 145.59 E-value: 3.78e-40
|
||||||||
PRK15426 | PRK15426 | cellulose biosynthesis regulator YedQ; |
275-441 | 2.01e-37 | ||||
cellulose biosynthesis regulator YedQ; Pssm-ID: 237964 [Multi-domain] Cd Length: 570 Bit Score: 143.62 E-value: 2.01e-37
|
||||||||
PRK09776 | PRK09776 | putative diguanylate cyclase; Provisional |
281-445 | 2.06e-31 | ||||
putative diguanylate cyclase; Provisional Pssm-ID: 182070 [Multi-domain] Cd Length: 1092 Bit Score: 127.87 E-value: 2.06e-31
|
||||||||
adrA | PRK10245 | diguanylate cyclase AdrA; Provisional |
274-443 | 3.11e-23 | ||||
diguanylate cyclase AdrA; Provisional Pssm-ID: 182329 [Multi-domain] Cd Length: 366 Bit Score: 100.29 E-value: 3.11e-23
|
||||||||
PRK10060 | PRK10060 | cyclic di-GMP phosphodiesterase; |
282-438 | 2.69e-20 | ||||
cyclic di-GMP phosphodiesterase; Pssm-ID: 236645 [Multi-domain] Cd Length: 663 Bit Score: 93.59 E-value: 2.69e-20
|
||||||||
COG2524 | COG2524 | Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; |
128-250 | 1.36e-14 | ||||
Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; Pssm-ID: 442013 [Multi-domain] Cd Length: 206 Bit Score: 72.22 E-value: 1.36e-14
|
||||||||
CBS_pair_SF | cd02205 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS ... |
144-251 | 1.44e-14 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341358 [Multi-domain] Cd Length: 113 Bit Score: 69.58 E-value: 1.44e-14
|
||||||||
COG2905 | COG2905 | Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains ... |
154-250 | 6.82e-14 | ||||
Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains [Signal transduction mechanisms]; Pssm-ID: 442149 [Multi-domain] Cd Length: 124 Bit Score: 67.93 E-value: 6.82e-14
|
||||||||
PRK11359 | PRK11359 | cyclic-di-GMP phosphodiesterase; Provisional |
263-439 | 1.04e-13 | ||||
cyclic-di-GMP phosphodiesterase; Provisional Pssm-ID: 183097 [Multi-domain] Cd Length: 799 Bit Score: 73.27 E-value: 1.04e-13
|
||||||||
PRK09966 | PRK09966 | diguanylate cyclase DgcN; |
274-440 | 1.71e-12 | ||||
diguanylate cyclase DgcN; Pssm-ID: 182171 [Multi-domain] Cd Length: 407 Bit Score: 68.88 E-value: 1.71e-12
|
||||||||
CBS | COG0517 | CBS domain [Signal transduction mechanisms]; |
154-253 | 6.45e-12 | ||||
CBS domain [Signal transduction mechanisms]; Pssm-ID: 440283 [Multi-domain] Cd Length: 128 Bit Score: 62.58 E-value: 6.45e-12
|
||||||||
COG3448 | COG3448 | CBS-domain-containing membrane protein [Signal transduction mechanisms]; |
154-259 | 1.18e-11 | ||||
CBS-domain-containing membrane protein [Signal transduction mechanisms]; Pssm-ID: 442671 [Multi-domain] Cd Length: 136 Bit Score: 62.19 E-value: 1.18e-11
|
||||||||
CBS_pair_SF | cd02205 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS ... |
12-121 | 1.34e-11 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341358 [Multi-domain] Cd Length: 113 Bit Score: 61.11 E-value: 1.34e-11
|
||||||||
YtoI | COG4109 | Predicted transcriptional regulator containing CBS domains [Transcription]; |
15-123 | 8.04e-11 | ||||
Predicted transcriptional regulator containing CBS domains [Transcription]; Pssm-ID: 443285 [Multi-domain] Cd Length: 135 Bit Score: 59.54 E-value: 8.04e-11
|
||||||||
PleD | COG3706 | Two-component response regulator, PleD family, consists of two REC domains and a diguanylate ... |
360-434 | 9.37e-11 | ||||
Two-component response regulator, PleD family, consists of two REC domains and a diguanylate cyclase (GGDEF) domain [Signal transduction mechanisms, Transcription]; Pssm-ID: 442920 [Multi-domain] Cd Length: 179 Bit Score: 60.69 E-value: 9.37e-11
|
||||||||
COG2524 | COG2524 | Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; |
9-121 | 2.92e-10 | ||||
Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; Pssm-ID: 442013 [Multi-domain] Cd Length: 206 Bit Score: 59.90 E-value: 2.92e-10
|
||||||||
CBS_pair_arch | cd09836 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains; The CBS domain, ... |
144-251 | 4.80e-10 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341405 [Multi-domain] Cd Length: 116 Bit Score: 56.76 E-value: 4.80e-10
|
||||||||
CBS | COG0517 | CBS domain [Signal transduction mechanisms]; |
9-121 | 1.01e-09 | ||||
CBS domain [Signal transduction mechanisms]; Pssm-ID: 440283 [Multi-domain] Cd Length: 128 Bit Score: 56.41 E-value: 1.01e-09
|
||||||||
COG3448 | COG3448 | CBS-domain-containing membrane protein [Signal transduction mechanisms]; |
9-121 | 1.85e-09 | ||||
CBS-domain-containing membrane protein [Signal transduction mechanisms]; Pssm-ID: 442671 [Multi-domain] Cd Length: 136 Bit Score: 55.64 E-value: 1.85e-09
|
||||||||
CBS_pair_SF | cd02205 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS ... |
86-187 | 6.06e-09 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341358 [Multi-domain] Cd Length: 113 Bit Score: 53.79 E-value: 6.06e-09
|
||||||||
CBS | COG0517 | CBS domain [Signal transduction mechanisms]; |
70-191 | 9.40e-09 | ||||
CBS domain [Signal transduction mechanisms]; Pssm-ID: 440283 [Multi-domain] Cd Length: 128 Bit Score: 53.33 E-value: 9.40e-09
|
||||||||
IMPDH | pfam00478 | IMP dehydrogenase / GMP reductase domain; This family is involved in biosynthesis of guanosine ... |
154-252 | 1.20e-08 | ||||
IMP dehydrogenase / GMP reductase domain; This family is involved in biosynthesis of guanosine nucleotide. Members of this family contain a TIM barrel structure. In the inosine monophosphate dehydrogenases 2 CBS domains pfam00571 are inserted in the TIM barrel. This family is a member of the common phosphate binding site TIM barrel family. Pssm-ID: 459826 [Multi-domain] Cd Length: 463 Bit Score: 57.01 E-value: 1.20e-08
|
||||||||
COG2905 | COG2905 | Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains ... |
71-192 | 1.81e-08 | ||||
Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains [Signal transduction mechanisms]; Pssm-ID: 442149 [Multi-domain] Cd Length: 124 Bit Score: 52.52 E-value: 1.81e-08
|
||||||||
COG2905 | COG2905 | Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains ... |
9-128 | 2.30e-08 | ||||
Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains [Signal transduction mechanisms]; Pssm-ID: 442149 [Multi-domain] Cd Length: 124 Bit Score: 52.14 E-value: 2.30e-08
|
||||||||
CBS_pair_bact_arch | cd17775 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria ... |
144-250 | 3.00e-08 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria and archaea; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341411 [Multi-domain] Cd Length: 117 Bit Score: 51.77 E-value: 3.00e-08
|
||||||||
CBS_pair_IMPDH | cd04601 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the inosine 5' ... |
154-250 | 3.92e-08 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the inosine 5' monophosphate dehydrogenase (IMPDH) protein; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the inosine 5' monophosphate dehydrogenase (IMPDH) protein. IMPDH is an essential enzyme that catalyzes the first step unique to GTP synthesis, playing a key role in the regulation of cell proliferation and differentiation. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341376 [Multi-domain] Cd Length: 110 Bit Score: 51.26 E-value: 3.92e-08
|
||||||||
CBS_two-component_sensor_histidine_kinase_repeat2 | cd17774 | 2 tandem repeats of the CBS domain in the two-component sensor histidine kinase and ... |
155-250 | 4.55e-08 | ||||
2 tandem repeats of the CBS domain in the two-component sensor histidine kinase and related-proteins, repeat 2; This cd contains 2 tandem repeats of the CBS domain in the two-component sensor histidine kinase and related-proteins. Two-component regulation is the predominant form of signal recognition and response coupling mechanism used by bacteria to sense and respond to diverse environmental stresses and cues ranging from common environmental stimuli to host signals recognized by pathogens and bacterial cell-cell communication signals. The structures of both sensors and regulators are modular, and numerous variations in domain architecture and composition have evolved to tailor to specific needs in signal perception and signal transduction. The simplest histidine kinase sensors consists of only sensing and kinase domains. The more complex hybrid sensors contain an additional REC domain typical of two-component regulators and in some cases a C-terminal histidine phosphotransferase (HPT) domain. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341410 [Multi-domain] Cd Length: 137 Bit Score: 51.77 E-value: 4.55e-08
|
||||||||
CBS_archAMPK_gamma-repeat1 | cd17779 | signal transduction protein with CBS domains; Archeal gamma-subunit of 5'-AMP-activated ... |
9-121 | 5.53e-08 | ||||
signal transduction protein with CBS domains; Archeal gamma-subunit of 5'-AMP-activated protein kinase (AMPK) contains four CBS domains in tandem repeats, similar to eukaryotic homologs. AMPK is an important regulator of metabolism and of energy homeostasis. It is a heterotrimeric protein composed of a catalytic serine/threonine kinase subunit (alpha) and two regulatory subunits (beta and gamma). The gamma subunit senses the intracellular energy status by competitively binding AMP and ATP and is believed to be responsible for allosteric regulation of the whole complex. In humans mutations in gamma- subunit of AMPK are associated with hypertrophic cardiomiopathy, Wolff-Parkinson-White syndrome and glycogen storage in the skeletal muscle. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. Pssm-ID: 341415 [Multi-domain] Cd Length: 136 Bit Score: 51.46 E-value: 5.53e-08
|
||||||||
CBS_pair_arch | cd09836 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains; The CBS domain, ... |
11-124 | 7.25e-08 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341405 [Multi-domain] Cd Length: 116 Bit Score: 50.60 E-value: 7.25e-08
|
||||||||
Nucleotidyl_cyc_III | cd07556 | Class III nucleotidyl cyclases; Class III nucleotidyl cyclases are the largest, most diverse ... |
320-410 | 7.87e-08 | ||||
Class III nucleotidyl cyclases; Class III nucleotidyl cyclases are the largest, most diverse group of nucleotidyl cyclases (NC's) containing prokaryotic and eukaryotic proteins. They can be divided into two major groups; the mononucleotidyl cyclases (MNC's) and the diguanylate cyclases (DGC's). The MNC's, which include the adenylate cyclases (AC's) and the guanylate cyclases (GC's), have a conserved cyclase homology domain (CHD), while the DGC's have a conserved GGDEF domain, named after a conserved motif within this subgroup. Their products, cyclic guanylyl and adenylyl nucleotides, are second messengers that play important roles in eukaryotic signal transduction and prokaryotic sensory pathways. Pssm-ID: 143637 [Multi-domain] Cd Length: 133 Bit Score: 50.82 E-value: 7.87e-08
|
||||||||
CBS_two-component_sensor_histidine_kinase_repeat1 | cd04620 | 2 tandem repeats of the CBS domain in the two-component sensor histidine kinase and ... |
166-250 | 1.17e-07 | ||||
2 tandem repeats of the CBS domain in the two-component sensor histidine kinase and related-proteins, repeat 1; This cd contains 2 tandem repeats of the CBS domain in the two-component sensor histidine kinase and related-proteins. Two-component regulation is the predominant form of signal recognition and response coupling mechanism used by bacteria to sense and respond to diverse environmental stresses and cues ranging from common environmental stimuli to host signals recognized by pathogens and bacterial cell-cell communication signals. The structures of both sensors and regulators are modular, and numerous variations in domain architecture and composition have evolved to tailor to specific needs in signal perception and signal transduction. The simplest histidine kinase sensors consists of only sensing and kinase domains. The more complex hybrid sensors contain an additional REC domain typical of two-component regulators and in some cases a C-terminal histidine phosphotransferase (HPT) domain. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341389 [Multi-domain] Cd Length: 136 Bit Score: 50.61 E-value: 1.17e-07
|
||||||||
COG3448 | COG3448 | CBS-domain-containing membrane protein [Signal transduction mechanisms]; |
70-196 | 3.08e-07 | ||||
CBS-domain-containing membrane protein [Signal transduction mechanisms]; Pssm-ID: 442671 [Multi-domain] Cd Length: 136 Bit Score: 49.48 E-value: 3.08e-07
|
||||||||
CBS_pair_GGDEF_PAS_repeat1 | cd09833 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in diguanylate ... |
154-246 | 4.62e-07 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in diguanylate cyclase/phosphodiesterase proteins with PAS sensors, repeat 1; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in diguanylate cyclase/phosphodiesterase proteins with PAS sensors. PAS domains have been found to bind ligands, and to act as sensors for light and oxygen in signal transduction. The GGDEF domain has been suggested to be homologous to the adenylyl cyclase catalytic domain and is thought to be involved in regulating cell surface adhesiveness in bacteria. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341403 [Multi-domain] Cd Length: 116 Bit Score: 48.37 E-value: 4.62e-07
|
||||||||
COG2524 | COG2524 | Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; |
4-189 | 5.53e-07 | ||||
Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; Pssm-ID: 442013 [Multi-domain] Cd Length: 206 Bit Score: 49.88 E-value: 5.53e-07
|
||||||||
COG3448 | COG3448 | CBS-domain-containing membrane protein [Signal transduction mechanisms]; |
196-266 | 7.12e-07 | ||||
CBS-domain-containing membrane protein [Signal transduction mechanisms]; Pssm-ID: 442671 [Multi-domain] Cd Length: 136 Bit Score: 48.32 E-value: 7.12e-07
|
||||||||
CBS_pair_archHTH_assoc | cd04588 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in archaea and ... |
153-250 | 9.96e-07 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in archaea and associated with helix turn helix domain; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the inosine 5' monophosphate dehydrogenase (IMPDH) protein. IMPDH is an essential enzyme that catalyzes the first step unique to GTP synthesis, playing a key role in the regulation of cell proliferation and differentiation. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341364 [Multi-domain] Cd Length: 111 Bit Score: 47.14 E-value: 9.96e-07
|
||||||||
CBS_pair_arch | cd17776 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in archaea; ... |
144-250 | 1.23e-06 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in archaea; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341412 [Multi-domain] Cd Length: 115 Bit Score: 47.01 E-value: 1.23e-06
|
||||||||
CBS | pfam00571 | CBS domain; CBS domains are small intracellular modules that pair together to form a stable ... |
199-253 | 1.36e-06 | ||||
CBS domain; CBS domains are small intracellular modules that pair together to form a stable globular domain. This family represents a single CBS domain. Pairs of these domains have been termed a Bateman domain. CBS domains have been shown to bind ligands with an adenosyl group such as AMP, ATP and S-AdoMet. CBS domains are found attached to a wide range of other protein domains suggesting that CBS domains may play a regulatory role making proteins sensitive to adenosyl carrying ligands. The region containing the CBS domains in Cystathionine-beta synthase is involved in regulation by S-AdoMet. CBS domain pairs from AMPK bind AMP or ATP. The CBS domains from IMPDH and the chloride channel CLC2 bind ATP. Pssm-ID: 425756 [Multi-domain] Cd Length: 57 Bit Score: 45.28 E-value: 1.36e-06
|
||||||||
CBS_arch_repeat2 | cd17778 | CBS pair domains found in archeal proteins, repeat 2; CBS pair domains found in archeal ... |
9-121 | 3.51e-06 | ||||
CBS pair domains found in archeal proteins, repeat 2; CBS pair domains found in archeal proteins that contain 2 repeats. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. Pssm-ID: 341414 [Multi-domain] Cd Length: 131 Bit Score: 46.17 E-value: 3.51e-06
|
||||||||
CBS_pair_bac | cd04629 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria; ... |
177-251 | 5.76e-06 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341392 [Multi-domain] Cd Length: 116 Bit Score: 45.12 E-value: 5.76e-06
|
||||||||
CBS_pair_CorC_HlyC_assoc | cd04590 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains the majority of which ... |
148-250 | 1.51e-05 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains the majority of which are associated with the CorC_HlyC domain; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains the majority of which are associated with the CorC_HlyC domain. CorC_HlyC is a transporter associated domain. This small domain is found in Na+/H+ antiporters, in proteins involved in magnesium and cobalt efflux, and in association with some proteins of unknown function. The function of the CorC_HlyC domain is uncertain but it might be involved in modulating transport of ion substrates. These CBS domains are found in highly conserved proteins that either have unknown function or are puported to be hemolysins, exotoxins involved in lysis of red blood cells in vitro. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341366 [Multi-domain] Cd Length: 119 Bit Score: 44.02 E-value: 1.51e-05
|
||||||||
CBS_pair_bact_arch | cd17775 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria ... |
11-122 | 1.64e-05 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria and archaea; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341411 [Multi-domain] Cd Length: 117 Bit Score: 44.07 E-value: 1.64e-05
|
||||||||
COG2905 | COG2905 | Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains ... |
199-266 | 3.07e-05 | ||||
Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains [Signal transduction mechanisms]; Pssm-ID: 442149 [Multi-domain] Cd Length: 124 Bit Score: 43.28 E-value: 3.07e-05
|
||||||||
CBS_pair_ParBc_assoc | cd04610 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a ... |
12-123 | 3.95e-05 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a ParBc (ParB-like nuclease) domain; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a ParBc (ParB-like nuclease) domain downstream. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341383 [Multi-domain] Cd Length: 108 Bit Score: 42.69 E-value: 3.95e-05
|
||||||||
CBS_pair_arch1_repeat2 | cd04632 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in archaea, ... |
102-187 | 6.08e-05 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in archaea, repeat 2; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341395 [Multi-domain] Cd Length: 127 Bit Score: 42.70 E-value: 6.08e-05
|
||||||||
CBS_pair_CAP-ED_NT_Pol-beta-like_DUF294_assoc | cd04587 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the ... |
167-250 | 8.01e-05 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the bacterial CAP_ED (cAMP receptor protein effector domain) family of transcription factors, the NT (Nucleotidyltransferase) Pol-beta-like domain, and the DUF294 dom; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the bacterial CAP_ED (cAMP receptor protein effector domain) family of transcription factors, the NT_Pol-beta-like domain, and the DUF294 domain. Members of CAP_ED, include CAP which binds cAMP, FNR (fumarate and nitrate reductase) which uses an iron-sulfur cluster to sense oxygen, and CooA a heme containing CO sensor. In all cases binding of the effector leads to conformational changes and the ability to activate transcription. The NT_Pol-beta-like domain includes the Nucleotidyltransferase (NT) domains of DNA polymerase beta and other family X DNA polymerases, as well as the NT domains of class I and class II CCA-adding enzymes, RelA- and SpoT-like ppGpp synthetases and hydrolases, 2'5'-oligoadenylate (2-5A)synthetases, Escherichia coli adenylyltransferase (GlnE), Escherichia coli uridylyl transferase (GlnD), poly (A) polymerases, terminal uridylyl transferases, Staphylococcus aureus kanamycin nucleotidyltransferase, and similar proteins. DUF294 is a putative nucleotidyltransferase with a conserved DxD motif. CBS is a small domain originally identified in cystathionine beta-synthase and subsequently found in a wide range of different proteins. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341363 [Multi-domain] Cd Length: 114 Bit Score: 41.64 E-value: 8.01e-05
|
||||||||
CBS_pair_arch1_repeat2 | cd04632 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in archaea, ... |
156-250 | 1.24e-04 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in archaea, repeat 2; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341395 [Multi-domain] Cd Length: 127 Bit Score: 41.55 E-value: 1.24e-04
|
||||||||
CBS_pair_Euryarchaeota | cd17784 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in ... |
12-124 | 1.36e-04 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in Euryarchaeota; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341420 [Multi-domain] Cd Length: 120 Bit Score: 41.25 E-value: 1.36e-04
|
||||||||
CBS_pair_Thermoplasmatales | cd17786 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in ... |
144-249 | 1.42e-04 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in Thermoplasmatales; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341422 [Multi-domain] Cd Length: 114 Bit Score: 41.37 E-value: 1.42e-04
|
||||||||
CBS_pair_arch_MET2_assoc | cd04605 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the ... |
9-120 | 1.84e-04 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the MET2 domain; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the MET2 domain. Met2 is a key enzyme in the biosynthesis of methionine. It encodes a homoserine transacetylase involved in converting homoserine to O-acetyl homoserine. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341379 [Multi-domain] Cd Length: 116 Bit Score: 40.68 E-value: 1.84e-04
|
||||||||
CBS | pfam00571 | CBS domain; CBS domains are small intracellular modules that pair together to form a stable ... |
9-60 | 2.96e-04 | ||||
CBS domain; CBS domains are small intracellular modules that pair together to form a stable globular domain. This family represents a single CBS domain. Pairs of these domains have been termed a Bateman domain. CBS domains have been shown to bind ligands with an adenosyl group such as AMP, ATP and S-AdoMet. CBS domains are found attached to a wide range of other protein domains suggesting that CBS domains may play a regulatory role making proteins sensitive to adenosyl carrying ligands. The region containing the CBS domains in Cystathionine-beta synthase is involved in regulation by S-AdoMet. CBS domain pairs from AMPK bind AMP or ATP. The CBS domains from IMPDH and the chloride channel CLC2 bind ATP. Pssm-ID: 425756 [Multi-domain] Cd Length: 57 Bit Score: 38.73 E-value: 2.96e-04
|
||||||||
CBS_pair_AcuB_like | cd04584 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the ... |
199-256 | 3.24e-04 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the ACT domain; The putative Acetoin Utilization Protein (Acub) from Vibrio Cholerae contains a CBS pair domain. The acetoin utilization protein plays a role in growth and sporulation on acetoin or butanediol for use as a carbon source. Acetoin is an important physiological metabolite excreted by many microorganisms. It is used as an external energy store by a number of fermentive bacteria. Acetoin is produced by the decarboxylation of alpha-acetolactate. Once superior carbon sources are exhausted, and the culture enters stationary phase, acetoin can be utilised in order to maintain the culture density. The conversion of acetoin into acetyl-CoA or 2,3-butanediol is catalysed by the acetoin dehydrogenase complex and acetoin reductase/2,3-butanediol dehydrogenase, respectively. Acetoin utilization proteins, acetylpolyamine amidohydrolases, and histone deacetylases are members of an ancient protein superfamily.This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the acetoin utilization proteins in bacteria. Acetoin is a product of fermentative metabolism in many prokaryotic and eukaryotic microorganisms. They produce acetoin as an external carbon storage compound and then later reuse it as a carbon and energy source during their stationary phase and sporulation. In addition these CBS domains are associated with a downstream ACT (aspartate kinase/chorismate mutase/TyrA) domain, which is linked to a wide range of metabolic enzymes that are regulated by amino acid concentration. Pairs of ACT domains bind specifically to a particular amino acid leading to regulation of the linked enzyme. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341361 [Multi-domain] Cd Length: 130 Bit Score: 40.48 E-value: 3.24e-04
|
||||||||
PRK11829 | PRK11829 | biofilm formation regulator HmsP; Provisional |
272-445 | 4.76e-04 | ||||
biofilm formation regulator HmsP; Provisional Pssm-ID: 183329 [Multi-domain] Cd Length: 660 Bit Score: 42.62 E-value: 4.76e-04
|
||||||||
CBS_pair_archHTH_assoc | cd04588 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in archaea and ... |
105-188 | 5.52e-04 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in archaea and associated with helix turn helix domain; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the inosine 5' monophosphate dehydrogenase (IMPDH) protein. IMPDH is an essential enzyme that catalyzes the first step unique to GTP synthesis, playing a key role in the regulation of cell proliferation and differentiation. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341364 [Multi-domain] Cd Length: 111 Bit Score: 39.44 E-value: 5.52e-04
|
||||||||
CBS | COG0517 | CBS domain [Signal transduction mechanisms]; |
197-266 | 5.86e-04 | ||||
CBS domain [Signal transduction mechanisms]; Pssm-ID: 440283 [Multi-domain] Cd Length: 128 Bit Score: 39.85 E-value: 5.86e-04
|
||||||||
CBS_pair_GGDEF_PAS_repeat2 | cd04611 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in diguanylate ... |
160-253 | 6.18e-04 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in diguanylate cyclase/phosphodiesterase proteins with PAS sensors, repeat 2; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in diguanylate cyclase/phosphodiesterase proteins with PAS sensors. PAS domains have been found to bind ligands, and to act as sensors for light and oxygen in signal transduction. The GGDEF domain has been suggested to be homologous to the adenylyl cyclase catalytic domain and is thought to be involved in regulating cell surface adhesiveness in bacteria. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341384 [Multi-domain] Cd Length: 131 Bit Score: 39.63 E-value: 6.18e-04
|
||||||||
TlyC | COG1253 | Hemolysin-related protein, contains CBS domains, UPF0053 family [General function prediction ... |
148-227 | 7.25e-04 | ||||
Hemolysin-related protein, contains CBS domains, UPF0053 family [General function prediction only]; Pssm-ID: 440865 [Multi-domain] Cd Length: 435 Bit Score: 41.64 E-value: 7.25e-04
|
||||||||
CBS | pfam00571 | CBS domain; CBS domains are small intracellular modules that pair together to form a stable ... |
71-124 | 1.17e-03 | ||||
CBS domain; CBS domains are small intracellular modules that pair together to form a stable globular domain. This family represents a single CBS domain. Pairs of these domains have been termed a Bateman domain. CBS domains have been shown to bind ligands with an adenosyl group such as AMP, ATP and S-AdoMet. CBS domains are found attached to a wide range of other protein domains suggesting that CBS domains may play a regulatory role making proteins sensitive to adenosyl carrying ligands. The region containing the CBS domains in Cystathionine-beta synthase is involved in regulation by S-AdoMet. CBS domain pairs from AMPK bind AMP or ATP. The CBS domains from IMPDH and the chloride channel CLC2 bind ATP. Pssm-ID: 425756 [Multi-domain] Cd Length: 57 Bit Score: 36.81 E-value: 1.17e-03
|
||||||||
CBS_pair_peptidase_M50 | cd04801 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in the ... |
177-250 | 1.26e-03 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains found in the metalloprotease peptidase M50; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in peptidase M50. Members of the M50 metallopeptidase family include mammalian sterol-regulatory element binding protein (SREBP) site 2 proteases and various hypothetical bacterial homologues. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341401 [Multi-domain] Cd Length: 113 Bit Score: 38.32 E-value: 1.26e-03
|
||||||||
CBS_pair_arch | cd09836 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains; The CBS domain, ... |
9-62 | 1.35e-03 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341405 [Multi-domain] Cd Length: 116 Bit Score: 38.27 E-value: 1.35e-03
|
||||||||
CBS_archAMPK_gamma-repeat2 | cd04631 | CBS pair domains found in archeal 5'-AMP-activated protein kinase gamma subunit-like proteins; ... |
177-250 | 1.48e-03 | ||||
CBS pair domains found in archeal 5'-AMP-activated protein kinase gamma subunit-like proteins; Archeal gamma-subunit of 5'-AMP-activated protein kinase (AMPK) contains four CBS domains in tandem repeats, similar to eukaryotic homologs. AMPK is an important regulator of metabolism and of energy homeostasis. It is a heterotrimeric protein composed of a catalytic serine/threonine kinase subunit (alpha) and two regulatory subunits (beta and gamma). The gamma subunit senses the intracellular energy status by competitively binding AMP and ATP and is believed to be responsible for allosteric regulation of the whole complex. In humans mutations in gamma- subunit of AMPK are associated with hypertrophic cardiomiopathy, Wolff-Parkinson-White syndrome and glycogen storage in the skeletal muscle. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. Pssm-ID: 341394 [Multi-domain] Cd Length: 130 Bit Score: 38.75 E-value: 1.48e-03
|
||||||||
CBS_pair_bac_euk | cd04623 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria ... |
160-242 | 1.49e-03 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains present in bacteria and eukaryotes; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341391 [Multi-domain] Cd Length: 113 Bit Score: 38.17 E-value: 1.49e-03
|
||||||||
CBS_pair_ParBc_assoc | cd04610 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a ... |
151-245 | 3.06e-03 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a ParBc (ParB-like nuclease) domain; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a ParBc (ParB-like nuclease) domain downstream. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341383 [Multi-domain] Cd Length: 108 Bit Score: 37.30 E-value: 3.06e-03
|
||||||||
CBS_arch_repeat2 | cd17778 | CBS pair domains found in archeal proteins, repeat 2; CBS pair domains found in archeal ... |
177-250 | 3.52e-03 | ||||
CBS pair domains found in archeal proteins, repeat 2; CBS pair domains found in archeal proteins that contain 2 repeats. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. Pssm-ID: 341414 [Multi-domain] Cd Length: 131 Bit Score: 37.70 E-value: 3.52e-03
|
||||||||
COG3448 | COG3448 | CBS-domain-containing membrane protein [Signal transduction mechanisms]; |
9-60 | 4.05e-03 | ||||
CBS-domain-containing membrane protein [Signal transduction mechanisms]; Pssm-ID: 442671 [Multi-domain] Cd Length: 136 Bit Score: 37.54 E-value: 4.05e-03
|
||||||||
CBS_pair_AcuB_like | cd04584 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the ... |
107-189 | 5.00e-03 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the ACT domain; The putative Acetoin Utilization Protein (Acub) from Vibrio Cholerae contains a CBS pair domain. The acetoin utilization protein plays a role in growth and sporulation on acetoin or butanediol for use as a carbon source. Acetoin is an important physiological metabolite excreted by many microorganisms. It is used as an external energy store by a number of fermentive bacteria. Acetoin is produced by the decarboxylation of alpha-acetolactate. Once superior carbon sources are exhausted, and the culture enters stationary phase, acetoin can be utilised in order to maintain the culture density. The conversion of acetoin into acetyl-CoA or 2,3-butanediol is catalysed by the acetoin dehydrogenase complex and acetoin reductase/2,3-butanediol dehydrogenase, respectively. Acetoin utilization proteins, acetylpolyamine amidohydrolases, and histone deacetylases are members of an ancient protein superfamily.This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the acetoin utilization proteins in bacteria. Acetoin is a product of fermentative metabolism in many prokaryotic and eukaryotic microorganisms. They produce acetoin as an external carbon storage compound and then later reuse it as a carbon and energy source during their stationary phase and sporulation. In addition these CBS domains are associated with a downstream ACT (aspartate kinase/chorismate mutase/TyrA) domain, which is linked to a wide range of metabolic enzymes that are regulated by amino acid concentration. Pairs of ACT domains bind specifically to a particular amino acid leading to regulation of the linked enzyme. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341361 [Multi-domain] Cd Length: 130 Bit Score: 37.02 E-value: 5.00e-03
|
||||||||
CBS_pair_SF | cd02205 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS ... |
6-59 | 5.32e-03 | ||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341358 [Multi-domain] Cd Length: 113 Bit Score: 36.45 E-value: 5.32e-03
|
||||||||
Blast search parameters | ||||
|