cryptochrome/deoxyribodipyrimidine photo-lyase family protein; cryptochrome/photolyase family protein( domain architecture ID 1903185)
cryptochrome/deoxyribodipyrimidine photo-lyase family (CPF) protein is a flavoprotein that may be involved in DNA repair, circadian photoreception, and transcriptional regulation; similar to cryptochrome-1| cryptochrome/photolyase family protein may act as a DNA photolyase such as deoxyribodipyrimidine photo-lyase, which is involved in repair of UV radiation-induced DNA damage by catalyzing the light-dependent monomerization of cyclobutyl pyrimidine dimers. Photolyases and cryptochromes are related flavoproteins; while photolyases harness the energy of blue light to repair DNA damage by removing pyrimidine dimers, cryptochromes do not repair DNA and are presumed to act instead in some other (possibly unknown) process such as entraining circadian rhythms. They may show weak photolyase activity in vitro but have not been shown to affect DNA repair in vivo. Rather, DASH family cryptochromes have been shown to bind RNA or DNA, and seem likely to act in light-responsive regulatory processes.
cryptochrome, DASH family; Photolyases and cryptochromes are related flavoproteins. ...
5-406
5.80e-41
cryptochrome, DASH family; Photolyases and cryptochromes are related flavoproteins. Photolyases harness the energy of blue light to repair DNA damage by removing pyrimidine dimers. Cryptochromes do not repair DNA and are presumed to act instead in some other (possibly unknown) process such as entraining circadian rhythms. This model describes the cryptochrome DASH subfamily, one of at least five major subfamilies, which is found in plants, animals, marine bacteria, etc. Members of this family bind both folate and FAD. They may show weak photolyase activity in vitro but have not been shown to affect DNA repair in vivo. Rather, DASH family cryptochromes have been shown to bind RNA (Vibrio cholerae VC1814), or DNA, and seem likely to act in light-responsive regulatory processes. [Cellular processes, Adaptations to atypical conditions]
Pssm-ID: 274288 [Multi-domain] Cd Length: 429 Bit Score: 150.99 E-value: 5.80e-41
cryptochrome, DASH family; Photolyases and cryptochromes are related flavoproteins. ...
5-406
5.80e-41
cryptochrome, DASH family; Photolyases and cryptochromes are related flavoproteins. Photolyases harness the energy of blue light to repair DNA damage by removing pyrimidine dimers. Cryptochromes do not repair DNA and are presumed to act instead in some other (possibly unknown) process such as entraining circadian rhythms. This model describes the cryptochrome DASH subfamily, one of at least five major subfamilies, which is found in plants, animals, marine bacteria, etc. Members of this family bind both folate and FAD. They may show weak photolyase activity in vitro but have not been shown to affect DNA repair in vivo. Rather, DASH family cryptochromes have been shown to bind RNA (Vibrio cholerae VC1814), or DNA, and seem likely to act in light-responsive regulatory processes. [Cellular processes, Adaptations to atypical conditions]
Pssm-ID: 274288 [Multi-domain] Cd Length: 429 Bit Score: 150.99 E-value: 5.80e-41
cryptochrome, plant family; At least five major families of cryptochomes and photolyases share ...
7-435
4.24e-38
cryptochrome, plant family; At least five major families of cryptochomes and photolyases share FAD cofactor binding, sequence homology, and the ability to react to short wavelengths of visible light. Photolysases are responsible for light-dependent DNA repair by removal of two types of uv-induced DNA dimerizations. Cryptochromes have other functions, often regulatory and often largely unknown, which may include circadian clock entrainment and control of development. Members of this subfamily are known so far only in plants; they may show some photolyase activity in vitro but appear mostly to be regulatory proteins that respond to blue light.
Pssm-ID: 131813 [Multi-domain] Cd Length: 475 Bit Score: 143.85 E-value: 4.24e-38
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options