Re/Si-specific NAD(P)(+) transhydrogenase subunit alpha [Salinibacter ruber]
NAD(P) transhydrogenase subunit alpha( domain architecture ID 10143114)
NAD(P) transhydrogenase subunit alpha is part of the enzyme complex that catalyzes the transhydrogenation between NADH and NADP which is coupled to respiration and ATP hydrolysis and functions as a proton pump across the membrane
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
Rubrum_tdh | cd05304 | Rubrum transdehydrogenase NAD-binding and catalytic domains; Transhydrogenases found in ... |
3-366 | 0e+00 | ||||||
Rubrum transdehydrogenase NAD-binding and catalytic domains; Transhydrogenases found in bacterial and inner mitochondrial membranes link NAD(P)(H)-dependent redox reactions to proton translocation. The energy of the proton electrochemical gradient (delta-p), generated by the respiratory electron transport chain, is consumed by transhydrogenase in NAD(P)+ reduction. Transhydrogenase is likely involved in the regulation of the citric acid cycle. Rubrum transhydrogenase has 3 components, dI, dII, and dIII. dII spans the membrane while dI and dIII protrude on the cytoplasmic/matrix side. DI contains 2 domains in Rossmann-like folds, linked by a long alpha helix, and contains a NAD binding site. Two dI polypeptides (represented in this sub-family) spontaneously form a heterotrimer with dIII in the absence of dII. In the heterotrimer, both dI chains may bind NAD, but only one is well-ordered. dIII also binds a well-ordered NADP, but in a different orientation than a classical Rossmann domain. : Pssm-ID: 240629 [Multi-domain] Cd Length: 363 Bit Score: 540.84 E-value: 0e+00
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
Rubrum_tdh | cd05304 | Rubrum transdehydrogenase NAD-binding and catalytic domains; Transhydrogenases found in ... |
3-366 | 0e+00 | ||||||
Rubrum transdehydrogenase NAD-binding and catalytic domains; Transhydrogenases found in bacterial and inner mitochondrial membranes link NAD(P)(H)-dependent redox reactions to proton translocation. The energy of the proton electrochemical gradient (delta-p), generated by the respiratory electron transport chain, is consumed by transhydrogenase in NAD(P)+ reduction. Transhydrogenase is likely involved in the regulation of the citric acid cycle. Rubrum transhydrogenase has 3 components, dI, dII, and dIII. dII spans the membrane while dI and dIII protrude on the cytoplasmic/matrix side. DI contains 2 domains in Rossmann-like folds, linked by a long alpha helix, and contains a NAD binding site. Two dI polypeptides (represented in this sub-family) spontaneously form a heterotrimer with dIII in the absence of dII. In the heterotrimer, both dI chains may bind NAD, but only one is well-ordered. dIII also binds a well-ordered NADP, but in a different orientation than a classical Rossmann domain. Pssm-ID: 240629 [Multi-domain] Cd Length: 363 Bit Score: 540.84 E-value: 0e+00
|
||||||||||
PntA | COG3288 | NAD/NADP transhydrogenase alpha subunit [Energy production and conversion]; |
3-366 | 2.13e-163 | ||||||
NAD/NADP transhydrogenase alpha subunit [Energy production and conversion]; Pssm-ID: 442518 [Multi-domain] Cd Length: 359 Bit Score: 462.16 E-value: 2.13e-163
|
||||||||||
pntA | PRK09424 | Re/Si-specific NAD(P)(+) transhydrogenase subunit alpha; |
3-368 | 1.40e-132 | ||||||
Re/Si-specific NAD(P)(+) transhydrogenase subunit alpha; Pssm-ID: 236507 [Multi-domain] Cd Length: 509 Bit Score: 389.19 E-value: 1.40e-132
|
||||||||||
pntA | TIGR00561 | NAD(P) transhydrogenase, alpha subunit; This integral membrane protein is the alpha subunit of ... |
5-366 | 1.79e-102 | ||||||
NAD(P) transhydrogenase, alpha subunit; This integral membrane protein is the alpha subunit of alpha 2 beta 2 tetramer that couples the proton transport across the membrane to the reversible transfer of hydride ion equivalents between NAD and NADP. An alternate name is pyridine nucleotide transhydrogenase alpha subunit. The N-terminal region is homologous to alanine dehydrogenase. In some species, such as Rhodospirillum rubrum, the alpha chain is replaced by two shorter chains, both with some homology to the full-length alpha chain modeled here. These score below the trusted cutoff. [Energy metabolism, Electron transport] Pssm-ID: 273140 [Multi-domain] Cd Length: 512 Bit Score: 312.37 E-value: 1.79e-102
|
||||||||||
AlaDh_PNT_C | pfam01262 | Alanine dehydrogenase/PNT, C-terminal domain; This family now also contains the lysine ... |
145-368 | 2.68e-65 | ||||||
Alanine dehydrogenase/PNT, C-terminal domain; This family now also contains the lysine 2-oxoglutarate reductases. Pssm-ID: 426165 [Multi-domain] Cd Length: 213 Bit Score: 206.58 E-value: 2.68e-65
|
||||||||||
AlaDh_PNT_C | smart01002 | Alanine dehydrogenase/PNT, C-terminal domain; Alanine dehydrogenase catalyzes the ... |
150-304 | 5.49e-49 | ||||||
Alanine dehydrogenase/PNT, C-terminal domain; Alanine dehydrogenase catalyzes the NAD-dependent reversible reductive amination of pyruvate into alanine. Pssm-ID: 214966 [Multi-domain] Cd Length: 149 Bit Score: 162.29 E-value: 5.49e-49
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
Rubrum_tdh | cd05304 | Rubrum transdehydrogenase NAD-binding and catalytic domains; Transhydrogenases found in ... |
3-366 | 0e+00 | ||||||
Rubrum transdehydrogenase NAD-binding and catalytic domains; Transhydrogenases found in bacterial and inner mitochondrial membranes link NAD(P)(H)-dependent redox reactions to proton translocation. The energy of the proton electrochemical gradient (delta-p), generated by the respiratory electron transport chain, is consumed by transhydrogenase in NAD(P)+ reduction. Transhydrogenase is likely involved in the regulation of the citric acid cycle. Rubrum transhydrogenase has 3 components, dI, dII, and dIII. dII spans the membrane while dI and dIII protrude on the cytoplasmic/matrix side. DI contains 2 domains in Rossmann-like folds, linked by a long alpha helix, and contains a NAD binding site. Two dI polypeptides (represented in this sub-family) spontaneously form a heterotrimer with dIII in the absence of dII. In the heterotrimer, both dI chains may bind NAD, but only one is well-ordered. dIII also binds a well-ordered NADP, but in a different orientation than a classical Rossmann domain. Pssm-ID: 240629 [Multi-domain] Cd Length: 363 Bit Score: 540.84 E-value: 0e+00
|
||||||||||
PntA | COG3288 | NAD/NADP transhydrogenase alpha subunit [Energy production and conversion]; |
3-366 | 2.13e-163 | ||||||
NAD/NADP transhydrogenase alpha subunit [Energy production and conversion]; Pssm-ID: 442518 [Multi-domain] Cd Length: 359 Bit Score: 462.16 E-value: 2.13e-163
|
||||||||||
pntA | PRK09424 | Re/Si-specific NAD(P)(+) transhydrogenase subunit alpha; |
3-368 | 1.40e-132 | ||||||
Re/Si-specific NAD(P)(+) transhydrogenase subunit alpha; Pssm-ID: 236507 [Multi-domain] Cd Length: 509 Bit Score: 389.19 E-value: 1.40e-132
|
||||||||||
pntA | TIGR00561 | NAD(P) transhydrogenase, alpha subunit; This integral membrane protein is the alpha subunit of ... |
5-366 | 1.79e-102 | ||||||
NAD(P) transhydrogenase, alpha subunit; This integral membrane protein is the alpha subunit of alpha 2 beta 2 tetramer that couples the proton transport across the membrane to the reversible transfer of hydride ion equivalents between NAD and NADP. An alternate name is pyridine nucleotide transhydrogenase alpha subunit. The N-terminal region is homologous to alanine dehydrogenase. In some species, such as Rhodospirillum rubrum, the alpha chain is replaced by two shorter chains, both with some homology to the full-length alpha chain modeled here. These score below the trusted cutoff. [Energy metabolism, Electron transport] Pssm-ID: 273140 [Multi-domain] Cd Length: 512 Bit Score: 312.37 E-value: 1.79e-102
|
||||||||||
Ala_dh_like | cd01620 | Alanine dehydrogenase and related dehydrogenases; Alanine dehydrogenase/Transhydrogenase, such ... |
4-341 | 4.49e-73 | ||||||
Alanine dehydrogenase and related dehydrogenases; Alanine dehydrogenase/Transhydrogenase, such as the hexameric L-alanine dehydrogenase of Phormidium lapideum, contain 2 Rossmann fold-like domains linked by an alpha helical region. Related proteins include Saccharopine Dehydrogenase (SDH), bifunctional lysine ketoglutarate reductase /saccharopine dehydrogenase enzyme, N(5)-(carboxyethyl)ornithine synthase, and Rubrum transdehydrogenase. Alanine dehydrogenase (L-AlaDH) catalyzes the NAD-dependent conversion of pyrucate to L-alanine via reductive amination. Transhydrogenases found in bacterial and inner mitochondrial membranes link NAD(P)(H)-dependent redox reactions to proton translocation. The energy of the proton electrochemical gradient (delta-p), generated by the respiratory electron transport chain, is consumed by transhydrogenase in NAD(P)+ reduction. Transhydrogenase is likely involved in the regulation of the citric acid cycle. Rubrum transhydrogenase has 3 components, dI, dII, and dIII. dII spans the membrane while dI and dIII protrude on the cytoplasmic/matirx side. DI contains 2 domains with Rossmann folds, linked by a long alpha helix, and contains a NAD binding site. Two dI polypeptides (represented in this sub-family) spontaneously form a heterotrimer with one dIII in the absence of dII. In the heterotrimer, both dI chains may bind NAD, but only one is well-ordered. dIII also binds a well-ordered NADP, but in a different orientation than classical Rossmann domains. Pssm-ID: 240621 [Multi-domain] Cd Length: 317 Bit Score: 230.37 E-value: 4.49e-73
|
||||||||||
AlaDh_PNT_C | pfam01262 | Alanine dehydrogenase/PNT, C-terminal domain; This family now also contains the lysine ... |
145-368 | 2.68e-65 | ||||||
Alanine dehydrogenase/PNT, C-terminal domain; This family now also contains the lysine 2-oxoglutarate reductases. Pssm-ID: 426165 [Multi-domain] Cd Length: 213 Bit Score: 206.58 E-value: 2.68e-65
|
||||||||||
L-AlaDH | cd05305 | Alanine dehydrogenase NAD-binding and catalytic domains; Alanine dehydrogenase (L-AlaDH) ... |
3-300 | 1.65e-54 | ||||||
Alanine dehydrogenase NAD-binding and catalytic domains; Alanine dehydrogenase (L-AlaDH) catalyzes the NAD-dependent conversion of pyruvate to L-alanine via reductive amination. Like formate dehydrogenase and related enzymes, L-AlaDH is comprised of 2 domains connected by a long alpha helical stretch, each resembling a Rossmann fold NAD-binding domain. The NAD-binding domain is inserted within the linear sequence of the more divergent catalytic domain. Ligand binding and active site residues are found in the cleft between the subdomains. L-AlaDH is typically hexameric and is critical in carbon and nitrogen metabolism in micro-organisms. Pssm-ID: 240630 [Multi-domain] Cd Length: 359 Bit Score: 183.38 E-value: 1.65e-54
|
||||||||||
AlaDh_PNT_C | smart01002 | Alanine dehydrogenase/PNT, C-terminal domain; Alanine dehydrogenase catalyzes the ... |
150-304 | 5.49e-49 | ||||||
Alanine dehydrogenase/PNT, C-terminal domain; Alanine dehydrogenase catalyzes the NAD-dependent reversible reductive amination of pyruvate into alanine. Pssm-ID: 214966 [Multi-domain] Cd Length: 149 Bit Score: 162.29 E-value: 5.49e-49
|
||||||||||
Ald | COG0686 | Alanine dehydrogenase (includes sporulation protein SpoVN) [Amino acid transport and ... |
3-295 | 3.45e-48 | ||||||
Alanine dehydrogenase (includes sporulation protein SpoVN) [Amino acid transport and metabolism]; Alanine dehydrogenase (includes sporulation protein SpoVN) is part of the Pathway/BioSystem: Urea cycle Pssm-ID: 440450 [Multi-domain] Cd Length: 372 Bit Score: 167.50 E-value: 3.45e-48
|
||||||||||
AlaDh_PNT_N | smart01003 | Alanine dehydrogenase/PNT, N-terminal domain; Alanine dehydrogenase catalyzes the ... |
6-138 | 8.50e-48 | ||||||
Alanine dehydrogenase/PNT, N-terminal domain; Alanine dehydrogenase catalyzes the NAD-dependent reversible reductive amination of pyruvate into alanine. Pssm-ID: 214967 [Multi-domain] Cd Length: 133 Bit Score: 158.73 E-value: 8.50e-48
|
||||||||||
AlaDh_PNT_N | pfam05222 | Alanine dehydrogenase/PNT, N-terminal domain; This family now also contains the lysine ... |
6-140 | 1.16e-44 | ||||||
Alanine dehydrogenase/PNT, N-terminal domain; This family now also contains the lysine 2-oxoglutarate reductases. Pssm-ID: 461595 [Multi-domain] Cd Length: 135 Bit Score: 150.65 E-value: 1.16e-44
|
||||||||||
FDH_GDH_like | cd12154 | Formate/glycerate dehydrogenases, D-specific 2-hydroxy acid dehydrogenases and related ... |
5-341 | 1.82e-42 | ||||||
Formate/glycerate dehydrogenases, D-specific 2-hydroxy acid dehydrogenases and related dehydrogenases; The formate/glycerate dehydrogenase like family contains a diverse group of enzymes such as formate dehydrogenase (FDH), glycerate dehydrogenase (GDH), D-lactate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine hydrolase, that share a common 2-domain structure. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar domains of the alpha/beta Rossmann fold NAD+ binding form. The NAD(P) binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD(P) is bound, primarily to the C-terminal portion of the 2nd (internal) domain. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. 2-hydroxyacid dehydrogenases are enzymes that catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate dehydrogenase (FDH) catalyzes the NAD+-dependent oxidation of formate ion to carbon dioxide with the concomitant reduction of NAD+ to NADH. FDHs of this family contain no metal ions or prosthetic groups. Catalysis occurs though direct transfer of a hydride ion to NAD+ without the stages of acid-base catalysis typically found in related dehydrogenases. Pssm-ID: 240631 [Multi-domain] Cd Length: 310 Bit Score: 150.84 E-value: 1.82e-42
|
||||||||||
ceo_syn | cd12181 | N(5)-(carboxyethyl)ornithine synthase; N(5)-(carboxyethyl)ornithine synthase (ceo_syn) ... |
4-295 | 4.75e-11 | ||||||
N(5)-(carboxyethyl)ornithine synthase; N(5)-(carboxyethyl)ornithine synthase (ceo_syn) catalyzes the NADP-dependent conversion of N5-(L-1-carboxyethyl)-L-ornithine to L-ornithine + pyruvate. Ornithine plays a key role in the urea cycle, which in mammals is used in arginine biosynthesis, and is a precursor in polyamine synthesis. ceo_syn is related to the NAD-dependent L-alanine dehydrogenases. Like formate dehydrogenase and related enzymes, ceo_syn is comprised of 2 domains connected by a long alpha helical stretch, each resembling a Rossmann fold NAD-binding domain. The NAD-binding domain is inserted within the linear sequence of the more divergent catalytic domain. These ceo_syn proteins have a partially conserved NAD-binding motif and active site residues that are characteristic of related enzymes such as Saccharopine Dehydrogenase. Pssm-ID: 240658 [Multi-domain] Cd Length: 295 Bit Score: 63.02 E-value: 4.75e-11
|
||||||||||
2-Hacid_dh_C | pfam02826 | D-isomer specific 2-hydroxyacid dehydrogenase, NAD binding domain; This domain is inserted ... |
171-287 | 1.02e-06 | ||||||
D-isomer specific 2-hydroxyacid dehydrogenase, NAD binding domain; This domain is inserted into the catalytic domain, the large dehydrogenase and D-lactate dehydrogenase families in SCOP. N-terminal portion of which is represented by family pfam00389. Pssm-ID: 427007 [Multi-domain] Cd Length: 178 Bit Score: 48.65 E-value: 1.02e-06
|
||||||||||
AdhP | COG1064 | D-arabinose 1-dehydrogenase, Zn-dependent alcohol dehydrogenase family [Carbohydrate transport ... |
167-322 | 1.07e-06 | ||||||
D-arabinose 1-dehydrogenase, Zn-dependent alcohol dehydrogenase family [Carbohydrate transport and metabolism]; Pssm-ID: 440684 [Multi-domain] Cd Length: 332 Bit Score: 50.11 E-value: 1.07e-06
|
||||||||||
MDR | cd05188 | Medium chain reductase/dehydrogenase (MDR)/zinc-dependent alcohol dehydrogenase-like family; ... |
160-315 | 4.15e-06 | ||||||
Medium chain reductase/dehydrogenase (MDR)/zinc-dependent alcohol dehydrogenase-like family; The medium chain reductase/dehydrogenases (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH) , quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Other MDR members have only a catalytic zinc, and some contain no coordinated zinc. Pssm-ID: 176178 [Multi-domain] Cd Length: 271 Bit Score: 47.70 E-value: 4.15e-06
|
||||||||||
SDH_like | cd05199 | Saccharopine Dehydrogenase like proteins; Saccharopine Dehydrogenase (SDH) and related ... |
4-73 | 4.27e-06 | ||||||
Saccharopine Dehydrogenase like proteins; Saccharopine Dehydrogenase (SDH) and related proteins, including bifunctional lysine ketoglutarate reductase/SDH enzymes and N(5)-(carboxyethyl)ornithine synthases. SDH catalyzes the final step in the reversible NAD-dependent oxidative deamination of saccharopine to alpha-ketoglutarate and lysine, in the alpha-aminoadipate pathway of L-lysine biosynthesis. SDH is structurally related to formate dehydrogenase and similar enzymes, having a 2-domain structure in which a Rossmann-fold NAD(P)-binding domain is inserted within the linear sequence of a catalytic domain of related structure. Bifunctional lysine ketoglutarate reductase/SDH protein is a pair of enzymes linked on a single polypeptide chain that catalyze the initial, consecutive steps of lysine degradation. These proteins are related to the 2-domain saccharopine dehydrogenases. Pssm-ID: 240623 [Multi-domain] Cd Length: 319 Bit Score: 48.00 E-value: 4.27e-06
|
||||||||||
hydroxyacyl_CoA_DH | cd08254 | 6-hydroxycyclohex-1-ene-1-carboxyl-CoA dehydrogenase, N-benzyl-3-pyrrolidinol dehydrogenase, ... |
164-216 | 1.79e-05 | ||||||
6-hydroxycyclohex-1-ene-1-carboxyl-CoA dehydrogenase, N-benzyl-3-pyrrolidinol dehydrogenase, and other MDR family members; This group contains enzymes of the zinc-dependent alcohol dehydrogenase family, including members (aka MDR) identified as 6-hydroxycyclohex-1-ene-1-carboxyl-CoA dehydrogenase and N-benzyl-3-pyrrolidinol dehydrogenase. 6-hydroxycyclohex-1-ene-1-carboxyl-CoA dehydrogenase catalyzes the conversion of 6-Hydroxycyclohex-1-enecarbonyl-CoA and NAD+ to 6-Ketoxycyclohex-1-ene-1-carboxyl-CoA,NADH, and H+. This group displays the characteristic catalytic and structural zinc sites of the zinc-dependent alcohol dehydrogenases. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176216 [Multi-domain] Cd Length: 338 Bit Score: 46.09 E-value: 1.79e-05
|
||||||||||
Zn_ADH7 | cd08261 | Alcohol dehydrogenases of the MDR family; This group contains members identified as related to ... |
171-342 | 2.20e-05 | ||||||
Alcohol dehydrogenases of the MDR family; This group contains members identified as related to zinc-dependent alcohol dehydrogenase and other members of the MDR family. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P)-binding Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group includes various activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Pssm-ID: 176222 [Multi-domain] Cd Length: 337 Bit Score: 46.03 E-value: 2.20e-05
|
||||||||||
Tdh | COG1063 | Threonine dehydrogenase or related Zn-dependent dehydrogenase [Amino acid transport and ... |
164-287 | 6.65e-05 | ||||||
Threonine dehydrogenase or related Zn-dependent dehydrogenase [Amino acid transport and metabolism, General function prediction only]; Threonine dehydrogenase or related Zn-dependent dehydrogenase is part of the Pathway/BioSystem: Non-phosphorylated Entner-Doudoroff pathway Pssm-ID: 440683 [Multi-domain] Cd Length: 341 Bit Score: 44.36 E-value: 6.65e-05
|
||||||||||
glucose_DH | cd08230 | Glucose dehydrogenase; Glucose dehydrogenase (GlcDH), a member of the medium chain ... |
166-356 | 8.32e-05 | ||||||
Glucose dehydrogenase; Glucose dehydrogenase (GlcDH), a member of the medium chain dehydrogenase/zinc-dependent alcohol dehydrogenase-like family, catalyzes the NADP(+)-dependent oxidation of glucose to gluconate, the first step in the Entner-Doudoroff pathway, an alternative to or substitute for glycolysis or the pentose phosphate pathway. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossman fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. Pssm-ID: 176192 [Multi-domain] Cd Length: 355 Bit Score: 44.13 E-value: 8.32e-05
|
||||||||||
HGDH_like | cd12184 | (R)-2-Hydroxyglutarate Dehydrogenase and related dehydrogenases, NAD-binding and catalytic ... |
167-290 | 2.04e-04 | ||||||
(R)-2-Hydroxyglutarate Dehydrogenase and related dehydrogenases, NAD-binding and catalytic domains; (R)-2-hydroxyglutarate dehydrogenase (HGDH) catalyzes the NAD-dependent reduction of 2-oxoglutarate to (R)-2-hydroxyglutarate. HGDH is a member of the D-2-hydroxyacid NAD(+)-dependent dehydrogenase family; these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Pssm-ID: 240660 Cd Length: 330 Bit Score: 43.05 E-value: 2.04e-04
|
||||||||||
murD | PRK14106 | UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional |
171-218 | 2.49e-04 | ||||||
UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase; Provisional Pssm-ID: 184511 [Multi-domain] Cd Length: 450 Bit Score: 43.04 E-value: 2.49e-04
|
||||||||||
MurD | COG0771 | UDP-N-acetylmuramoylalanine-D-glutamate ligase [Cell wall/membrane/envelope biogenesis]; ... |
171-219 | 3.58e-04 | ||||||
UDP-N-acetylmuramoylalanine-D-glutamate ligase [Cell wall/membrane/envelope biogenesis]; UDP-N-acetylmuramoylalanine-D-glutamate ligase is part of the Pathway/BioSystem: Mureine biosynthesis Pssm-ID: 440534 [Multi-domain] Cd Length: 445 Bit Score: 42.38 E-value: 3.58e-04
|
||||||||||
LDH_like_1 | cd12187 | D-Lactate and related Dehydrogenase like proteins, NAD-binding and catalytic domains; ... |
174-290 | 4.33e-04 | ||||||
D-Lactate and related Dehydrogenase like proteins, NAD-binding and catalytic domains; D-Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate, and is a member of the 2-hydroxyacid dehydrogenase family. LDH is homologous to D-2-Hydroxyisocaproic acid dehydrogenase(D-HicDH) and shares the 2 domain structure of formate dehydrogenase. D-2-hydroxyisocaproate dehydrogenase-like (HicDH) proteins are NAD-dependent members of the hydroxycarboxylate dehydrogenase family, and share the Rossmann fold typical of many NAD binding proteins. HicDH from Lactobacillus casei forms a monomer and catalyzes the reaction R-CO-COO(-) + NADH + H+ to R-COH-COO(-) + NAD+. D-HicDH, like the structurally distinct L-HicDH, exhibits low side-chain R specificity, accepting a wide range of 2-oxocarboxylic acid side chains. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Pssm-ID: 240663 [Multi-domain] Cd Length: 329 Bit Score: 41.88 E-value: 4.33e-04
|
||||||||||
Zn_ADH3 | cd08265 | Alcohol dehydrogenases of the MDR family; This group resembles the zinc-dependent alcohol ... |
160-216 | 5.42e-04 | ||||||
Alcohol dehydrogenases of the MDR family; This group resembles the zinc-dependent alcohol dehydrogenase and has the catalytic and structural zinc-binding sites characteristic of this group. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. ADH-like proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and generally have 2 tightly bound zinc atoms per subunit. The active site zinc is coordinated by a histidine, two cysteines, and a water molecule. The second zinc seems to play a structural role, affects subunit interactions, and is typically coordinated by 4 cysteines. Other MDR members have only a catalytic zinc, and some contain no coordinated zinc. Pssm-ID: 176226 [Multi-domain] Cd Length: 384 Bit Score: 41.73 E-value: 5.42e-04
|
||||||||||
formate_dh_like | cd05198 | Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxy acid dehydrogenase ... |
172-290 | 6.90e-04 | ||||||
Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxy acid dehydrogenase family; Formate dehydrogenase, D-specific 2-hydroxy acid dehydrogenase, Phosphoglycerate Dehydrogenase, Lactate dehydrogenase, Thermostable Phosphite Dehydrogenase, and Hydroxy(phenyl)pyruvate reductase, among others, share a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. 2-hydroxyacid dehydrogenases are enzymes that catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. Formate dehydrogenase (FDH) catalyzes the NAD+-dependent oxidation of formate ion to carbon dioxide with the concomitant reduction of NAD+ to NADH. FDHs of this family contain no metal ions or prosthetic groups. Catalysis occurs though direct transfer of hydride ion to NAD+ without the stages of acid-base catalysis typically found in related dehydrogenases. FDHs are found in all methylotrophic microorganisms in energy production and in the stress responses of plants. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase, among others. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. Pssm-ID: 240622 [Multi-domain] Cd Length: 302 Bit Score: 41.08 E-value: 6.90e-04
|
||||||||||
FDH_like_2 | cd08284 | Glutathione-dependent formaldehyde dehydrogenase related proteins, child 2; ... |
160-221 | 7.20e-04 | ||||||
Glutathione-dependent formaldehyde dehydrogenase related proteins, child 2; Glutathione-dependent formaldehyde dehydrogenases (FDHs) are members of the zinc-dependent/medium chain alcohol dehydrogenase family. Formaldehyde dehydrogenase (FDH) is a member of the zinc-dependent/medium chain alcohol dehydrogenase family. FDH converts formaldehyde and NAD to formate and NADH. The initial step in this process the spontaneous formation of a S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione, followed by FDH-mediated oxidation (and detoxification) of the adduct to S-formylglutathione. These tetrameric FDHs have a catalytic zinc that resides between the catalytic and NAD(H)binding domains and a structural zinc in a lobe of the catalytic domain. The medium chain alcohol dehydrogenase family (MDR) has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Pssm-ID: 176244 [Multi-domain] Cd Length: 344 Bit Score: 41.09 E-value: 7.20e-04
|
||||||||||
SDH | cd12188 | Saccharopine Dehydrogenase NAD-binding and catalytic domains; Saccharopine Dehydrogenase (SDH) ... |
10-73 | 1.25e-03 | ||||||
Saccharopine Dehydrogenase NAD-binding and catalytic domains; Saccharopine Dehydrogenase (SDH) catalyzes the final step in the reversible NAD-dependent oxidative deamination of saccharopine to alpha-ketoglutarate and lysine, in the alpha-aminoadipate pathway of L-lysine biosynthesis. SHD is structurally related to formate dehydrogenase and similar enzymes, having a 2-domain structure in which a Rossmann-fold NAD(P)-binding domain is inserted within the linear sequence of a catalytic domain of related structure. Pssm-ID: 240664 [Multi-domain] Cd Length: 351 Bit Score: 40.68 E-value: 1.25e-03
|
||||||||||
Zn_ADH6 | cd08260 | Alcohol dehydrogenases of the MDR family; NAD(P)(H)-dependent oxidoreductases are the major ... |
165-214 | 1.42e-03 | ||||||
Alcohol dehydrogenases of the MDR family; NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. This group has the characteristic catalytic and structural zinc sites of the zinc-dependent alcohol dehydrogenases. Alcohol dehydrogenase in the liver converts ethanol and NAD+ to acetaldehyde and NADH, while in yeast and some other microorganisms ADH catalyzes the conversion acetaldehyde to ethanol in alcoholic fermentation. ADH is a member of the medium chain alcohol dehydrogenase family (MDR), which has a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The NAD(H)-binding region is comprised of 2 structurally similar halves, each of which contacts a mononucleotide. A GxGxxG motif after the first mononucleotide contact half allows the close contact of the coenzyme with the ADH backbone. The N-terminal catalytic domain has a distant homology to GroES. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit, a catalytic zinc at the active site and a structural zinc in a lobe of the catalytic domain. NAD(H)-binding occurs in the cleft between the catalytic and coenzyme-binding domains at the active site, and coenzyme binding induces a conformational closing of this cleft. Coenzyme binding typically precedes and contributes to substrate binding. In human ADH catalysis, the zinc ion helps coordinate the alcohol, followed by deprotonation of a histidine, the ribose of NAD, a serine, then the alcohol, which allows the transfer of a hydride to NAD+, creating NADH and a zinc-bound aldehyde or ketone. In yeast and some bacteria, the active site zinc binds an aldehyde, polarizing it, and leading to the reverse reaction. Pssm-ID: 176221 [Multi-domain] Cd Length: 345 Bit Score: 40.28 E-value: 1.42e-03
|
||||||||||
LdhA | COG1052 | Lactate dehydrogenase or related 2-hydroxyacid dehydrogenase [Energy production and conversion, ... |
178-287 | 2.09e-03 | ||||||
Lactate dehydrogenase or related 2-hydroxyacid dehydrogenase [Energy production and conversion, Coenzyme transport and metabolism, General function prediction only]; Lactate dehydrogenase or related 2-hydroxyacid dehydrogenase is part of the Pathway/BioSystem: Pyridoxal phosphate biosynthesis Pssm-ID: 440672 [Multi-domain] Cd Length: 316 Bit Score: 39.69 E-value: 2.09e-03
|
||||||||||
2-Hacid_dh_11 | cd12175 | Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains; ... |
178-290 | 2.18e-03 | ||||||
Putative D-isomer specific 2-hydroxyacid dehydrogenases, NAD-binding and catalytic domains; 2-Hydroxyacid dehydrogenases catalyze the conversion of a wide variety of D-2-hydroxy acids to their corresponding keto acids. The general mechanism is (R)-lactate + acceptor to pyruvate + reduced acceptor. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-adenosylhomocysteine hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Some related proteins have similar structural subdomain but with a tandem arrangement of the catalytic and NAD-binding subdomains in the linear sequence. While many members of this family are dimeric, alanine DH is hexameric and phosphoglycerate DH is tetrameric. Pssm-ID: 240652 [Multi-domain] Cd Length: 311 Bit Score: 39.48 E-value: 2.18e-03
|
||||||||||
TDH | cd05281 | Threonine dehydrogenase; L-threonine dehydrogenase (TDH) catalyzes the zinc-dependent ... |
161-216 | 2.97e-03 | ||||||
Threonine dehydrogenase; L-threonine dehydrogenase (TDH) catalyzes the zinc-dependent formation of 2-amino-3-ketobutyrate from L-threonine via NAD(H)- dependent oxidation. THD is a member of the zinc-requiring, medium chain NAD(H)-dependent alcohol dehydrogenase family (MDR). MDRs have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. NAD(P)(H)-dependent oxidoreductases are the major enzymes in the interconversion of alcohols and aldehydes, or ketones. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria) and have 2 tightly bound zinc atoms per subunit. Sorbitol and aldose reductase are NAD(+) binding proteins of the polyol pathway, which interconverts glucose and fructose. Pssm-ID: 176184 [Multi-domain] Cd Length: 341 Bit Score: 39.14 E-value: 2.97e-03
|
||||||||||
LDH | cd12186 | D-Lactate dehydrogenase and D-2-Hydroxyisocaproic acid dehydrogenase (D-HicDH), NAD-binding ... |
172-290 | 3.69e-03 | ||||||
D-Lactate dehydrogenase and D-2-Hydroxyisocaproic acid dehydrogenase (D-HicDH), NAD-binding and catalytic domains; D-Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate, and is a member of the 2-hydroxyacid dehydrogenases family. LDH is homologous to D-2-hydroxyisocaproic acid dehydrogenase(D-HicDH) and shares the 2 domain structure of formate dehydrogenase. D-HicDH is a NAD-dependent member of the hydroxycarboxylate dehydrogenase family, and shares the Rossmann fold typical of many NAD binding proteins. HicDH from Lactobacillus casei forms a monomer and catalyzes the reaction R-CO-COO(-) + NADH + H+ to R-COH-COO(-) + NAD+. D-HicDH, like the structurally distinct L-HicDH, exhibits low side-chain R specificity, accepting a wide range of 2-oxocarboxylic acid side chains. Formate/glycerate and related dehydrogenases of the D-specific 2-hydroxyacid dehydrogenase superfamily include groups such as formate dehydrogenase, glycerate dehydrogenase, L-alanine dehydrogenase, and S-Adenosylhomocysteine Hydrolase. Despite often low sequence identity, these proteins typically have a characteristic arrangement of 2 similar subdomains of the alpha/beta Rossmann fold NAD+ binding form. The NAD+ binding domain is inserted within the linear sequence of the mostly N-terminal catalytic domain, which has a similar domain structure to the internal NAD binding domain. Structurally, these domains are connected by extended alpha helices and create a cleft in which NAD is bound, primarily to the C-terminal portion of the 2nd (internal) domain. Pssm-ID: 240662 Cd Length: 329 Bit Score: 39.06 E-value: 3.69e-03
|
||||||||||
MDR_TM0436_like | cd08231 | Hypothetical enzyme TM0436 resembles the zinc-dependent alcohol dehydrogenases (ADH); This ... |
163-318 | 5.80e-03 | ||||||
Hypothetical enzyme TM0436 resembles the zinc-dependent alcohol dehydrogenases (ADH); This group contains the hypothetical TM0436 alcohol dehydrogenase from Thermotoga maritima, proteins annotated as 5-exo-alcohol dehydrogenase, and other members of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family. MDR, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. Pssm-ID: 176193 [Multi-domain] Cd Length: 361 Bit Score: 38.39 E-value: 5.80e-03
|
||||||||||
SerA | COG0111 | Phosphoglycerate dehydrogenase or related dehydrogenase [Coenzyme transport and metabolism]; ... |
171-290 | 6.34e-03 | ||||||
Phosphoglycerate dehydrogenase or related dehydrogenase [Coenzyme transport and metabolism]; Phosphoglycerate dehydrogenase or related dehydrogenase is part of the Pathway/BioSystem: Serine biosynthesis Pssm-ID: 439881 [Multi-domain] Cd Length: 314 Bit Score: 38.25 E-value: 6.34e-03
|
||||||||||
ADH_zinc_N | pfam00107 | Zinc-binding dehydrogenase; |
181-315 | 8.56e-03 | ||||||
Zinc-binding dehydrogenase; Pssm-ID: 395057 [Multi-domain] Cd Length: 129 Bit Score: 36.05 E-value: 8.56e-03
|
||||||||||
2-desacetyl-2-hydroxyethyl_bacteriochlorophyllide_ | cd08255 | 2-desacetyl-2-hydroxyethyl bacteriochlorophyllide and other MDR family members; This subgroup ... |
155-301 | 9.04e-03 | ||||||
2-desacetyl-2-hydroxyethyl bacteriochlorophyllide and other MDR family members; This subgroup of the medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family has members identified as 2-desacetyl-2-hydroxyethyl bacteriochlorophyllide A dehydrogenase and alcohol dehydrogenases. The medium chain dehydrogenases/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family, which contains the zinc-dependent alcohol dehydrogenase (ADH-Zn) and related proteins, is a diverse group of proteins related to the first identified member, class I mammalian ADH. MDRs display a broad range of activities and are distinguished from the smaller short chain dehydrogenases (~ 250 amino acids vs. the ~ 350 amino acids of the MDR). The MDR proteins have 2 domains: a C-terminal NAD(P) binding-Rossmann fold domain of a beta-alpha form and an N-terminal catalytic domain with distant homology to GroES. The MDR group contains a host of activities, including the founding alcohol dehydrogenase (ADH), quinone reductase, sorbitol dehydrogenase, formaldehyde dehydrogenase, butanediol DH, ketose reductase, cinnamyl reductase, and numerous others. The zinc-dependent alcohol dehydrogenases (ADHs) catalyze the NAD(P)(H)-dependent interconversion of alcohols to aldehydes or ketones. Active site zinc has a catalytic role, while structural zinc aids in stability. Pssm-ID: 176217 [Multi-domain] Cd Length: 277 Bit Score: 37.64 E-value: 9.04e-03
|
||||||||||
Qor | COG0604 | NADPH:quinone reductase or related Zn-dependent oxidoreductase [Energy production and ... |
171-342 | 9.17e-03 | ||||||
NADPH:quinone reductase or related Zn-dependent oxidoreductase [Energy production and conversion, General function prediction only]; Pssm-ID: 440369 [Multi-domain] Cd Length: 322 Bit Score: 37.82 E-value: 9.17e-03
|
||||||||||
FDH_like | cd05278 | Formaldehyde dehydrogenases; Formaldehyde dehydrogenase (FDH) is a member of the ... |
164-286 | 9.52e-03 | ||||||
Formaldehyde dehydrogenases; Formaldehyde dehydrogenase (FDH) is a member of the zinc-dependent/medium chain alcohol dehydrogenase family. Formaldehyde dehydrogenase (aka ADH3) may be the ancestral form of alcohol dehydrogenase, which evolved to detoxify formaldehyde. This CD contains glutathione dependant FDH, glutathione independent FDH, and related alcohol dehydrogenases. FDH converts formaldehyde and NAD(P) to formate and NAD(P)H. The initial step in this process the spontaneous formation of a S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione, followed by FDH-mediated oxidation (and detoxification) of the adduct to S-formylglutathione. Unlike typical FDH, Pseudomonas putida aldehyde-dismutating FDH (PFDH) is glutathione-independent. The medium chain alcohol dehydrogenase family (MDR) have a NAD(P)(H)-binding domain in a Rossmann fold of a beta-alpha form. The N-terminal region typically has an all-beta catalytic domain. These proteins typically form dimers (typically higher plants, mammals) or tetramers (yeast, bacteria), and have 2 tightly bound zinc atoms per subunit. Pssm-ID: 176181 [Multi-domain] Cd Length: 347 Bit Score: 37.64 E-value: 9.52e-03
|
||||||||||
Blast search parameters | ||||
|