AMP nucleosidase; This model represents the AMP nucleosidase from proteobacteria but also ...
4-479
0e+00
AMP nucleosidase; This model represents the AMP nucleosidase from proteobacteria but also including a sequence from Corynebacterium, a gram-positive organism. The species from E. coli has been most well studied.
Pssm-ID: 273773 [Multi-domain] Cd Length: 477 Bit Score: 651.91 E-value: 0e+00
AMP nucleosidase; AMP nucleosidase (AMN) catalyzes the hydrolysis of AMP to ribose 5-phosphate ...
174-457
2.23e-128
AMP nucleosidase; AMP nucleosidase (AMN) catalyzes the hydrolysis of AMP to ribose 5-phosphate and adenine. It is a prokaryotic enzyme which plays a role in purine nucleoside salvage and intracellular AMP level regulation. AMN is active as a homohexamer; each monomer is comprised of a catalytic domain and a putative regulatory domain. This model represents the catalytic domain. AMN belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family.
Pssm-ID: 350162 Cd Length: 242 Bit Score: 372.27 E-value: 2.23e-128
Nucleoside phosphorylase/nucleosidase, includes 5'-methylthioadenosine/S-adenosylhomocysteine ...
246-459
1.74e-54
Nucleoside phosphorylase/nucleosidase, includes 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase MtnN and futalosine hydrolase MqnB [Nucleotide transport and metabolism, Coenzyme transport and metabolism]; Nucleoside phosphorylase/nucleosidase, includes 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase MtnN and futalosine hydrolase MqnB is part of the Pathway/BioSystem: Menaquinone biosynthesis
Pssm-ID: 440538 Cd Length: 231 Bit Score: 182.03 E-value: 1.74e-54
Bacterial AMP nucleoside phosphorylase N-terminus; This is the N-terminal domain of bacterial ...
6-160
2.33e-45
Bacterial AMP nucleoside phosphorylase N-terminus; This is the N-terminal domain of bacterial AMP nucleoside phosphorylase (AMNp). The N- and C-termini form distinct domains which intertwine with each other to form a stable monomer which associates with five other monomers to yield the active hexamer. The N-terminus consists of a long helix and a four-stranded sheet with a novel topology. The C-terminus binds the nucleoside whereas the N-terminus acts as the enzymatic regulatory domain. AMNp (EC:3.2.2.4) catalyzes the hydrolysis of AMP to form adenine and ribose 5-phosphate. thereby regulating intracellular AMP levels.
Pssm-ID: 431276 Cd Length: 155 Bit Score: 155.40 E-value: 2.33e-45
AMP nucleosidase; This model represents the AMP nucleosidase from proteobacteria but also ...
4-479
0e+00
AMP nucleosidase; This model represents the AMP nucleosidase from proteobacteria but also including a sequence from Corynebacterium, a gram-positive organism. The species from E. coli has been most well studied.
Pssm-ID: 273773 [Multi-domain] Cd Length: 477 Bit Score: 651.91 E-value: 0e+00
AMP nucleosidase; AMP nucleosidase (AMN) catalyzes the hydrolysis of AMP to ribose 5-phosphate ...
174-457
2.23e-128
AMP nucleosidase; AMP nucleosidase (AMN) catalyzes the hydrolysis of AMP to ribose 5-phosphate and adenine. It is a prokaryotic enzyme which plays a role in purine nucleoside salvage and intracellular AMP level regulation. AMN is active as a homohexamer; each monomer is comprised of a catalytic domain and a putative regulatory domain. This model represents the catalytic domain. AMN belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family.
Pssm-ID: 350162 Cd Length: 242 Bit Score: 372.27 E-value: 2.23e-128
Nucleoside phosphorylase/nucleosidase, includes 5'-methylthioadenosine/S-adenosylhomocysteine ...
246-459
1.74e-54
Nucleoside phosphorylase/nucleosidase, includes 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase MtnN and futalosine hydrolase MqnB [Nucleotide transport and metabolism, Coenzyme transport and metabolism]; Nucleoside phosphorylase/nucleosidase, includes 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase MtnN and futalosine hydrolase MqnB is part of the Pathway/BioSystem: Menaquinone biosynthesis
Pssm-ID: 440538 Cd Length: 231 Bit Score: 182.03 E-value: 1.74e-54
Bacterial AMP nucleoside phosphorylase N-terminus; This is the N-terminal domain of bacterial ...
6-160
2.33e-45
Bacterial AMP nucleoside phosphorylase N-terminus; This is the N-terminal domain of bacterial AMP nucleoside phosphorylase (AMNp). The N- and C-termini form distinct domains which intertwine with each other to form a stable monomer which associates with five other monomers to yield the active hexamer. The N-terminus consists of a long helix and a four-stranded sheet with a novel topology. The C-terminus binds the nucleoside whereas the N-terminus acts as the enzymatic regulatory domain. AMNp (EC:3.2.2.4) catalyzes the hydrolysis of AMP to form adenine and ribose 5-phosphate. thereby regulating intracellular AMP levels.
Pssm-ID: 431276 Cd Length: 155 Bit Score: 155.40 E-value: 2.33e-45
nucleoside phosphorylase-I family; The nucleoside phosphorylase-I family members accept a ...
252-454
9.02e-45
nucleoside phosphorylase-I family; The nucleoside phosphorylase-I family members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases such as purine nucleoside phosphorylase (PNP, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases such as AMP nucleosidase (AMN, EC 3.2.2.4) and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). Members of this family display different physiologically relevant quaternary structures: hexameric (trimer-of-dimers arrangement of Shewanella oneidensis MR-1 UP); homotrimeric (human PNP and Escherichia coli PNPII or XapA); hexameric (with some evidence for co-existence of a trimeric form) such as E. coli PNPI (DeoD); or homodimeric such as human and Trypanosoma brucei UP. The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family.
Pssm-ID: 350156 Cd Length: 216 Bit Score: 155.91 E-value: 9.02e-45
AMP nucleosidase, putative; The sequences in the clade represented by this model are most ...
182-468
2.83e-30
AMP nucleosidase, putative; The sequences in the clade represented by this model are most closely related to the AMP nucleosidase found in TIGR01717. These sequences are found only in Chlamydia and Porphyromonas and differ sufficiently from the characterized AMP nucleosidase to put some doubt on assignment of this name.
Pssm-ID: 130782 Cd Length: 266 Bit Score: 118.49 E-value: 2.83e-30
Phosphorylase superfamily; Members of this family include: purine nucleoside phosphorylase ...
265-453
3.17e-18
Phosphorylase superfamily; Members of this family include: purine nucleoside phosphorylase (PNP) Uridine phosphorylase (UdRPase) 5'-methylthioadenosine phosphorylase (MTA phosphorylase)
Pssm-ID: 426013 Cd Length: 233 Bit Score: 83.55 E-value: 3.17e-18
uridine phosphorylases similar to Escherichia coli Udp and related phosphorylases; Uridine ...
270-455
1.85e-12
uridine phosphorylases similar to Escherichia coli Udp and related phosphorylases; Uridine phosphorylase (UP) is specific for pyrimidines, and is involved in pyrimidine salvage and in the maintenance of uridine homeostasis. In addition to E. coli Udp, this subfamily includes Shewanella oneidensis MR-1 UP and Plasmodium falciparum purine nucleoside phosphorylase (PfPNP). PfPNP is an outlier in terms of genetic distance from the other families of PNPs. PfPNP is catalytically active for inosine and guanosine, and in addition, has a weak UP activity. This subfamily belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family.
Pssm-ID: 350167 Cd Length: 239 Bit Score: 66.70 E-value: 1.85e-12
nucleoside phosphorylases similar to 5'-methylthioadenosine/S-adenosylhomocysteine ...
264-436
1.05e-08
nucleoside phosphorylases similar to 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidases; This subfamily includes both bacterial and plant 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidases (MTANs), as well as futalosine nucleosidase and adenosylhopane nucleosidase. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while plant enzymes are highly specific for MTA and are unable to metabolize SAH or show significantly reduced activity towards SAH. MTAN is involved in methionine and S-adenosyl-methionine recycling, polyamine biosynthesis, and bacterial quorum sensing. This subfamily belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family.
Pssm-ID: 350170 [Multi-domain] Cd Length: 210 Bit Score: 55.38 E-value: 1.05e-08
uncharacterized subfamily of the nucleoside phosphorylase-I family; This subfamily is composed ...
248-423
4.69e-08
uncharacterized subfamily of the nucleoside phosphorylase-I family; This subfamily is composed of uncharacterized members including Streptococcus pneumoniae hypothetical protein spr0068. The nucleoside phosphorylase-I (NP-I) family members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases such as purine nucleoside phosphorylase (PNP, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases such as AMP nucleosidase (AMN, EC 3.2.2.4) and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). Members of the NP-I family display different physiologically relevant quaternary structures: hexameric (trimer-of-dimers arrangement of Shewanella oneidensis MR-1 UP); homotrimeric (human PNP and Escherichia coli PNPII or XapA); hexameric (with some evidence for co-existence of a trimeric form) such as E. coli PNPI (DeoD); or homodimeric such as human and Trypanosoma brucei UP. The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family.
Pssm-ID: 350158 [Multi-domain] Cd Length: 221 Bit Score: 53.64 E-value: 4.69e-08
5'-methylthioadenosine/S-adenosylhomocysteine nucleosidases; This subfamily includes both ...
274-429
4.42e-07
5'-methylthioadenosine/S-adenosylhomocysteine nucleosidases; This subfamily includes both bacterial and plant 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidases (MTANs): bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while plant enzymes are highly specific for MTA and are unable to metabolize SAH or show significantly reduced activity towards SAH. MTAN is involved in methionine and S-adenosyl-methionine recycling, polyamine biosynthesis, and bacterial quorum sensing. This subfamily belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family.
Pssm-ID: 350159 Cd Length: 222 Bit Score: 50.57 E-value: 4.42e-07
purine nucleoside phosphorylases similar to Thermus thermophiles PNP; Purine nucleoside ...
262-423
7.07e-06
purine nucleoside phosphorylases similar to Thermus thermophiles PNP; Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine nucleosides. Thermus thermophiles PNP catalyzes the phosphorolysis of guanosine but not adenosine. This subfamily belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family.
Pssm-ID: 350165 Cd Length: 234 Bit Score: 47.30 E-value: 7.07e-06
5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase; This model represents the enzyme ...
264-423
2.78e-05
5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase; This model represents the enzyme 5-methylthioadenosine/S-adenosylhomocysteine nucleosidase which acts on its two substrates at the same active site. This enzyme is involved in the recycling of the components of S-adenosylmethionine after it has donated one of its two non-ribose sulfur ligands to an acceptor. In the case of 5-methylthioadenosine this represents the first step of the methionine salvage pathway in bacteria. This enzyme is widely distributed in bacteria, especially those that lack adenosylhomocysteinase (EC 3.3.1.1). One clade of bacteria including Agrobacterium, Mesorhizobium, Sinorhizobium and Brucella includes sequences annotated as MTA/SAH nucleotidase, but differs significantly in homology and has no independent experimental evidence. There are homologs of this enzyme in plants, some of which score between trusted and noise cutoffs here, but there is no experimental evidence to validate this function at this time. [Central intermediary metabolism, Other, Purines, pyrimidines, nucleosides, and nucleotides, Salvage of nucleosides and nucleotides]
Pssm-ID: 130765 Cd Length: 228 Bit Score: 45.48 E-value: 2.78e-05
5'-deoxy-5'-methylthioadenosine phosphorylases similar to Sulfolobus solfataricus MTAPI; 5 ...
265-435
2.86e-04
5'-deoxy-5'-methylthioadenosine phosphorylases similar to Sulfolobus solfataricus MTAPI; 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP) catalyzes the reversible phosphorolysis of 5'-deoxy-5'-methylthioadenosine (MTA) to adenine and 5-methylthio-D-ribose-1-phosphate. Sulfolobus solfataricus MTAPI will utilize inosine, guanosine, and adenosine as substrates, in addition to MTA. Two MTAPs have been isolated from S. solfataricus: SsMTAP1 and SsMTAPII, SsMTAPII belongs to a different subfamily of the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-I family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family.
Pssm-ID: 350164 Cd Length: 220 Bit Score: 42.21 E-value: 2.86e-04
purine nucleoside phosphorylases similar to Escherichia coli PNP-I (DeoD) and Trichomonas ...
298-429
3.85e-03
purine nucleoside phosphorylases similar to Escherichia coli PNP-I (DeoD) and Trichomonas vaginalis PNP; Escherichia coli purine nucleoside phosphorylase (PNP)-I (or DeoD) accepts both 6-oxo and 6-amino purine nucleosides as substrates. Trichomonas vaginalis PNP has broad substrate specificity, having phosphorolytic catalytic activity with adenosine, inosine, and guanosine (with adenosine as the preferred substrate). This subfamily belongs to the nucleoside phosphorylase-I (NP-I) family, whose members accept a range of purine nucleosides as well as the pyrimidine nucleoside uridine. The NP-1 family includes phosphorolytic nucleosidases, such as purine nucleoside phosphorylase (PNPs, EC. 2.4.2.1), uridine phosphorylase (UP, EC 2.4.2.3), and 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP, EC 2.4.2.28), and hydrolytic nucleosidases, such as AMP nucleosidase (AMN, EC 3.2.2.4), and 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN, EC 3.2.2.16). The NP-I family is distinct from nucleoside phosphorylase-II, which belongs to a different structural family.
Pssm-ID: 350157 Cd Length: 228 Bit Score: 38.92 E-value: 3.85e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options