hemolysin family protein [Corynebacterium amycolatum]
hemolysin family protein( domain architecture ID 11441338)
hemolysin family protein containing tandem repeats of the cystathionine beta-synthase (CBS pair) domain and a transporter-associated domain, similar to Methanoculleus thermophilus hemolysin
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
TlyC | COG1253 | Hemolysin-related protein, contains CBS domains, UPF0053 family [General function prediction ... |
13-341 | 6.42e-90 | ||||||
Hemolysin-related protein, contains CBS domains, UPF0053 family [General function prediction only]; : Pssm-ID: 440865 [Multi-domain] Cd Length: 435 Bit Score: 275.84 E-value: 6.42e-90
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
TlyC | COG1253 | Hemolysin-related protein, contains CBS domains, UPF0053 family [General function prediction ... |
13-341 | 6.42e-90 | ||||||
Hemolysin-related protein, contains CBS domains, UPF0053 family [General function prediction only]; Pssm-ID: 440865 [Multi-domain] Cd Length: 435 Bit Score: 275.84 E-value: 6.42e-90
|
||||||||||
CNNM | pfam01595 | Cyclin M transmembrane N-terminal domain; This transmembrane domain is found in metal ... |
13-199 | 4.35e-36 | ||||||
Cyclin M transmembrane N-terminal domain; This transmembrane domain is found in metal transporter proteins such as cyclin M 1/2 (CNNM). CNNMs are integral membrane proteins that are conserved from bacteria to humans. CNNM family members influence metal ion homeostasis through mechanisms that may not involve direct membrane transport of the ions. Structurally, CNNMs are complex proteins that contain an extracellular N-terminal domain preceding a transmembrane domain, a 'Bateman module', which consists of two cystathionine- beta-synthase (CBS) domains pfam00571, and a C-terminal cNMP (cyclic nucleotide monophosphate) binding domain. This entry describes the CNNM transmembrane domain which contains four hydrophobic regions and forms a dimer through hydrophobic contacts between TM2 and TM3, in which each chain is composed of three transmembrane helices (TM1-3), a pair of short helices exposed on the intracellular side, and a juxtamembrane (JM) helix that forms a belt-like structure. The homodimer adopts an inward-facing conformation with a negatively charged cavity containing a conserved pi-helical turn in TM3 that coordinates a Mg2 ion. Pssm-ID: 460260 Cd Length: 183 Bit Score: 128.87 E-value: 4.35e-36
|
||||||||||
CBS_pair_CorC_HlyC_assoc | cd04590 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains the majority of which ... |
213-334 | 2.95e-23 | ||||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains the majority of which are associated with the CorC_HlyC domain; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains the majority of which are associated with the CorC_HlyC domain. CorC_HlyC is a transporter associated domain. This small domain is found in Na+/H+ antiporters, in proteins involved in magnesium and cobalt efflux, and in association with some proteins of unknown function. The function of the CorC_HlyC domain is uncertain but it might be involved in modulating transport of ion substrates. These CBS domains are found in highly conserved proteins that either have unknown function or are puported to be hemolysins, exotoxins involved in lysis of red blood cells in vitro. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341366 [Multi-domain] Cd Length: 119 Bit Score: 92.94 E-value: 2.95e-23
|
||||||||||
PRK15094 | PRK15094 | magnesium/cobalt transporter CorC; |
184-340 | 1.23e-07 | ||||||
magnesium/cobalt transporter CorC; Pssm-ID: 185050 [Multi-domain] Cd Length: 292 Bit Score: 52.50 E-value: 1.23e-07
|
||||||||||
CBS | smart00116 | Domain in cystathionine beta-synthase and other proteins; Domain present in all 3 forms of ... |
224-269 | 2.13e-03 | ||||||
Domain in cystathionine beta-synthase and other proteins; Domain present in all 3 forms of cellular life. Present in two copies in inosine monophosphate dehydrogenase, of which one is disordered in the crystal structure. A number of disease states are associated with CBS-containing proteins including homocystinuria, Becker's and Thomsen disease. Pssm-ID: 214522 [Multi-domain] Cd Length: 49 Bit Score: 35.57 E-value: 2.13e-03
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
TlyC | COG1253 | Hemolysin-related protein, contains CBS domains, UPF0053 family [General function prediction ... |
13-341 | 6.42e-90 | ||||||
Hemolysin-related protein, contains CBS domains, UPF0053 family [General function prediction only]; Pssm-ID: 440865 [Multi-domain] Cd Length: 435 Bit Score: 275.84 E-value: 6.42e-90
|
||||||||||
CNNM | pfam01595 | Cyclin M transmembrane N-terminal domain; This transmembrane domain is found in metal ... |
13-199 | 4.35e-36 | ||||||
Cyclin M transmembrane N-terminal domain; This transmembrane domain is found in metal transporter proteins such as cyclin M 1/2 (CNNM). CNNMs are integral membrane proteins that are conserved from bacteria to humans. CNNM family members influence metal ion homeostasis through mechanisms that may not involve direct membrane transport of the ions. Structurally, CNNMs are complex proteins that contain an extracellular N-terminal domain preceding a transmembrane domain, a 'Bateman module', which consists of two cystathionine- beta-synthase (CBS) domains pfam00571, and a C-terminal cNMP (cyclic nucleotide monophosphate) binding domain. This entry describes the CNNM transmembrane domain which contains four hydrophobic regions and forms a dimer through hydrophobic contacts between TM2 and TM3, in which each chain is composed of three transmembrane helices (TM1-3), a pair of short helices exposed on the intracellular side, and a juxtamembrane (JM) helix that forms a belt-like structure. The homodimer adopts an inward-facing conformation with a negatively charged cavity containing a conserved pi-helical turn in TM3 that coordinates a Mg2 ion. Pssm-ID: 460260 Cd Length: 183 Bit Score: 128.87 E-value: 4.35e-36
|
||||||||||
CorB | COG4536 | Mg2+ and Co2+ transporter CorB, contains DUF21, CBS pair, and CorC-HlyC domains [Inorganic ion ... |
14-339 | 6.11e-34 | ||||||
Mg2+ and Co2+ transporter CorB, contains DUF21, CBS pair, and CorC-HlyC domains [Inorganic ion transport and metabolism]; Pssm-ID: 443602 [Multi-domain] Cd Length: 420 Bit Score: 129.04 E-value: 6.11e-34
|
||||||||||
CBS_pair_CorC_HlyC_assoc | cd04590 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains the majority of which ... |
213-334 | 2.95e-23 | ||||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains the majority of which are associated with the CorC_HlyC domain; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains the majority of which are associated with the CorC_HlyC domain. CorC_HlyC is a transporter associated domain. This small domain is found in Na+/H+ antiporters, in proteins involved in magnesium and cobalt efflux, and in association with some proteins of unknown function. The function of the CorC_HlyC domain is uncertain but it might be involved in modulating transport of ion substrates. These CBS domains are found in highly conserved proteins that either have unknown function or are puported to be hemolysins, exotoxins involved in lysis of red blood cells in vitro. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341366 [Multi-domain] Cd Length: 119 Bit Score: 92.94 E-value: 2.95e-23
|
||||||||||
YtoI | COG4109 | Predicted transcriptional regulator containing CBS domains [Transcription]; |
210-336 | 1.43e-14 | ||||||
Predicted transcriptional regulator containing CBS domains [Transcription]; Pssm-ID: 443285 [Multi-domain] Cd Length: 135 Bit Score: 69.56 E-value: 1.43e-14
|
||||||||||
COG3448 | COG3448 | CBS-domain-containing membrane protein [Signal transduction mechanisms]; |
211-337 | 1.71e-08 | ||||||
CBS-domain-containing membrane protein [Signal transduction mechanisms]; Pssm-ID: 442671 [Multi-domain] Cd Length: 136 Bit Score: 52.56 E-value: 1.71e-08
|
||||||||||
CBS_pair_SF | cd02205 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS ... |
224-333 | 2.49e-08 | ||||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains superfamily; The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341358 [Multi-domain] Cd Length: 113 Bit Score: 51.48 E-value: 2.49e-08
|
||||||||||
PRK15094 | PRK15094 | magnesium/cobalt transporter CorC; |
184-340 | 1.23e-07 | ||||||
magnesium/cobalt transporter CorC; Pssm-ID: 185050 [Multi-domain] Cd Length: 292 Bit Score: 52.50 E-value: 1.23e-07
|
||||||||||
CBS | COG0517 | CBS domain [Signal transduction mechanisms]; |
212-341 | 5.18e-07 | ||||||
CBS domain [Signal transduction mechanisms]; Pssm-ID: 440283 [Multi-domain] Cd Length: 128 Bit Score: 47.94 E-value: 5.18e-07
|
||||||||||
COG2524 | COG2524 | Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; |
68-267 | 2.19e-06 | ||||||
Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; Pssm-ID: 442013 [Multi-domain] Cd Length: 206 Bit Score: 47.96 E-value: 2.19e-06
|
||||||||||
COG2524 | COG2524 | Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; |
224-336 | 4.98e-06 | ||||||
Predicted transcriptional regulator, contains C-terminal CBS domains [Transcription]; Pssm-ID: 442013 [Multi-domain] Cd Length: 206 Bit Score: 46.80 E-value: 4.98e-06
|
||||||||||
CBS_pair_IMPDH | cd04601 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the inosine 5' ... |
225-304 | 9.09e-06 | ||||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the inosine 5' monophosphate dehydrogenase (IMPDH) protein; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains in the inosine 5' monophosphate dehydrogenase (IMPDH) protein. IMPDH is an essential enzyme that catalyzes the first step unique to GTP synthesis, playing a key role in the regulation of cell proliferation and differentiation. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341376 [Multi-domain] Cd Length: 110 Bit Score: 43.94 E-value: 9.09e-06
|
||||||||||
PRK11573 | PRK11573 | hypothetical protein; Provisional |
101-339 | 9.95e-06 | ||||||
hypothetical protein; Provisional Pssm-ID: 236933 [Multi-domain] Cd Length: 413 Bit Score: 47.05 E-value: 9.95e-06
|
||||||||||
COG2905 | COG2905 | Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains ... |
224-336 | 9.81e-05 | ||||||
Signal-transduction protein containing cAMP-binding, CBS, and nucleotidyltransferase domains [Signal transduction mechanisms]; Pssm-ID: 442149 [Multi-domain] Cd Length: 124 Bit Score: 41.35 E-value: 9.81e-05
|
||||||||||
CBS | pfam00571 | CBS domain; CBS domains are small intracellular modules that pair together to form a stable ... |
224-269 | 1.63e-04 | ||||||
CBS domain; CBS domains are small intracellular modules that pair together to form a stable globular domain. This family represents a single CBS domain. Pairs of these domains have been termed a Bateman domain. CBS domains have been shown to bind ligands with an adenosyl group such as AMP, ATP and S-AdoMet. CBS domains are found attached to a wide range of other protein domains suggesting that CBS domains may play a regulatory role making proteins sensitive to adenosyl carrying ligands. The region containing the CBS domains in Cystathionine-beta synthase is involved in regulation by S-AdoMet. CBS domain pairs from AMPK bind AMP or ATP. The CBS domains from IMPDH and the chloride channel CLC2 bind ATP. Pssm-ID: 425756 [Multi-domain] Cd Length: 57 Bit Score: 39.12 E-value: 1.63e-04
|
||||||||||
CBS | COG0517 | CBS domain [Signal transduction mechanisms]; |
186-267 | 1.63e-04 | ||||||
CBS domain [Signal transduction mechanisms]; Pssm-ID: 440283 [Multi-domain] Cd Length: 128 Bit Score: 41.00 E-value: 1.63e-04
|
||||||||||
CBS_pair_DRTGG_assoc | cd04596 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the ... |
229-334 | 1.90e-04 | ||||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the DRTGG domain; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a DRTGG domain upstream. The function of the DRTGG domain, named after its conserved residues, is unknown. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341371 [Multi-domain] Cd Length: 108 Bit Score: 40.15 E-value: 1.90e-04
|
||||||||||
CBS_pair_CBS | cd04608 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the ... |
221-333 | 1.66e-03 | ||||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the pyridoxal-phosphate (PALP) dependent enzyme domain; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with the pyridoxal-phosphate (PALP) dependent enzyme domain upstream. Cystathionine beta-synthase (CBS ) contains, besides the C-terminal regulatory CBS-pair, an N-terminal heme-binding module, followed by a pyridoxal phosphate (PLP) domain, which houses the active site. It is the first enzyme in the transsulfuration pathway, catalyzing the conversion of serine and homocysteine to cystathionine and water. In general, CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. It has been proposed that the CBS domain may play a regulatory role, although its exact function is unknown. Mutations of conserved residues within this domain are associated with a variety of human hereditary diseases, including congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members), Wolff-Parkinson-White syndrome (gamma 2 subunit of AMP-activated protein kinase), retinitis pigmentosa (IMP dehydrogenase-1), and homocystinuria (cystathionine beta-synthase). Pssm-ID: 341382 [Multi-domain] Cd Length: 120 Bit Score: 37.90 E-value: 1.66e-03
|
||||||||||
CBS | smart00116 | Domain in cystathionine beta-synthase and other proteins; Domain present in all 3 forms of ... |
224-269 | 2.13e-03 | ||||||
Domain in cystathionine beta-synthase and other proteins; Domain present in all 3 forms of cellular life. Present in two copies in inosine monophosphate dehydrogenase, of which one is disordered in the crystal structure. A number of disease states are associated with CBS-containing proteins including homocystinuria, Becker's and Thomsen disease. Pssm-ID: 214522 [Multi-domain] Cd Length: 49 Bit Score: 35.57 E-value: 2.13e-03
|
||||||||||
CBS_pair_inorgPPase | cd04597 | Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with ... |
213-268 | 2.52e-03 | ||||||
Two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with family II inorganic pyrophosphatase; This cd contains two tandem repeats of the cystathionine beta-synthase (CBS pair) domains associated with a subgroup of family II inorganic pyrophosphatases (PPases) that also contain a DRTGG domain. The homolog from Clostridium has been shown to be inhibited by AMP and activated by a novel effector, diadenosine 5',5-P1,P4-tetraphosphate (AP(4)A), which has been shown to bind to the CBS domain. The CBS domain, named after human CBS, is a small domain originally identified in cystathionine beta-synthase and is subsequently found in a wide range of different proteins. CBS domains usually occur in tandem repeats. They associate to form a so-called Bateman domain or a CBS pair based on crystallographic studies in bacteria. The CBS pair was used as a basis for this cd hierarchy since the human CBS proteins can adopt the typical core structure and form an intramolecular CBS pair. The interface between the two CBS domains forms a cleft that is a potential ligand binding site. The CBS pair coexists with a variety of other functional domains and this has been used to help in its classification here. Pssm-ID: 341372 [Multi-domain] Cd Length: 106 Bit Score: 36.94 E-value: 2.52e-03
|
||||||||||
IMPDH | pfam00478 | IMP dehydrogenase / GMP reductase domain; This family is involved in biosynthesis of guanosine ... |
225-298 | 7.16e-03 | ||||||
IMP dehydrogenase / GMP reductase domain; This family is involved in biosynthesis of guanosine nucleotide. Members of this family contain a TIM barrel structure. In the inosine monophosphate dehydrogenases 2 CBS domains pfam00571 are inserted in the TIM barrel. This family is a member of the common phosphate binding site TIM barrel family. Pssm-ID: 459826 [Multi-domain] Cd Length: 463 Bit Score: 38.14 E-value: 7.16e-03
|
||||||||||
Blast search parameters | ||||
|