DHA2 family efflux MFS transporter permease subunit [Bradyrhizobium sp. Leo121]
efflux MFS transporter permease( domain architecture ID 1000855)
efflux MFS (major facilitator superfamily) transporter permease, similar to Escherichia coli multidrug efflux pump EmrB and Neisseria gonorrhoeae fatty acid resistance protein FarB
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||||
efflux_EmrB super family | cl31024 | drug resistance transporter, EmrB/QacA subfamily; This subfamily of drug efflux proteins, a ... |
31-519 | 3.64e-94 | ||||||||
drug resistance transporter, EmrB/QacA subfamily; This subfamily of drug efflux proteins, a part of the major faciliator family, is predicted to have 14 potential membrane-spanning regions. Members with known activities include EmrB (multiple drug resistance efflux pump) in E. coli, FarB (antibacterial fatty acid resistance) in Neisseria gonorrhoeae, TcmA (tetracenomycin C resistance) in Streptomyces glaucescens, etc. In most cases, the efflux pump is described as having a second component encoded in the same operon, such as EmrA of E. coli. [Cellular processes, Toxin production and resistance, Transport and binding proteins, Other] The actual alignment was detected with superfamily member TIGR00711: Pssm-ID: 129794 [Multi-domain] Cd Length: 485 Bit Score: 295.44 E-value: 3.64e-94
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||
efflux_EmrB | TIGR00711 | drug resistance transporter, EmrB/QacA subfamily; This subfamily of drug efflux proteins, a ... |
31-519 | 3.64e-94 | ||||||||
drug resistance transporter, EmrB/QacA subfamily; This subfamily of drug efflux proteins, a part of the major faciliator family, is predicted to have 14 potential membrane-spanning regions. Members with known activities include EmrB (multiple drug resistance efflux pump) in E. coli, FarB (antibacterial fatty acid resistance) in Neisseria gonorrhoeae, TcmA (tetracenomycin C resistance) in Streptomyces glaucescens, etc. In most cases, the efflux pump is described as having a second component encoded in the same operon, such as EmrA of E. coli. [Cellular processes, Toxin production and resistance, Transport and binding proteins, Other] Pssm-ID: 129794 [Multi-domain] Cd Length: 485 Bit Score: 295.44 E-value: 3.64e-94
|
||||||||||||
MFS_LmrB_MDR_like | cd17503 | Bacillus subtilis lincomycin resistance protein (LmrB) and similar multidrug resistance (MDR) ... |
33-521 | 1.28e-92 | ||||||||
Bacillus subtilis lincomycin resistance protein (LmrB) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of multidrug resistance (MDR) transporters including Bacillus subtilis lincomycin resistance protein LmrB, and several proteins from Escherichia coli such as the putative MDR transporters EmrB, MdtD, and YieQ. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341046 [Multi-domain] Cd Length: 380 Bit Score: 287.94 E-value: 1.28e-92
|
||||||||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
20-426 | 1.93e-30 | ||||||||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 121.62 E-value: 1.93e-30
|
||||||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
34-428 | 2.47e-20 | ||||||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 92.48 E-value: 2.47e-20
|
||||||||||||
PRK14995 | PRK14995 | SmvA family efflux MFS transporter; |
92-437 | 1.58e-17 | ||||||||
SmvA family efflux MFS transporter; Pssm-ID: 184957 [Multi-domain] Cd Length: 495 Bit Score: 85.16 E-value: 1.58e-17
|
||||||||||||
perm_prefix_1 | NF038403 | permease prefix domain 1; The permease prefix domain 1 is found as the N-terminal domain of ... |
454-491 | 1.04e-03 | ||||||||
permease prefix domain 1; The permease prefix domain 1 is found as the N-terminal domain of putative permeases resembling ABC transporter permeases, and also of hypothetical proteins of unknown function. In at least some permease families, this prefix domain is only variably present, and may be replaced by a different, seemingly unrelated prefix domain. Pssm-ID: 468503 Cd Length: 59 Bit Score: 37.49 E-value: 1.04e-03
|
||||||||||||
Name | Accession | Description | Interval | E-value | ||||||||
efflux_EmrB | TIGR00711 | drug resistance transporter, EmrB/QacA subfamily; This subfamily of drug efflux proteins, a ... |
31-519 | 3.64e-94 | ||||||||
drug resistance transporter, EmrB/QacA subfamily; This subfamily of drug efflux proteins, a part of the major faciliator family, is predicted to have 14 potential membrane-spanning regions. Members with known activities include EmrB (multiple drug resistance efflux pump) in E. coli, FarB (antibacterial fatty acid resistance) in Neisseria gonorrhoeae, TcmA (tetracenomycin C resistance) in Streptomyces glaucescens, etc. In most cases, the efflux pump is described as having a second component encoded in the same operon, such as EmrA of E. coli. [Cellular processes, Toxin production and resistance, Transport and binding proteins, Other] Pssm-ID: 129794 [Multi-domain] Cd Length: 485 Bit Score: 295.44 E-value: 3.64e-94
|
||||||||||||
MFS_LmrB_MDR_like | cd17503 | Bacillus subtilis lincomycin resistance protein (LmrB) and similar multidrug resistance (MDR) ... |
33-521 | 1.28e-92 | ||||||||
Bacillus subtilis lincomycin resistance protein (LmrB) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of multidrug resistance (MDR) transporters including Bacillus subtilis lincomycin resistance protein LmrB, and several proteins from Escherichia coli such as the putative MDR transporters EmrB, MdtD, and YieQ. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341046 [Multi-domain] Cd Length: 380 Bit Score: 287.94 E-value: 1.28e-92
|
||||||||||||
MFS_MMR_MDR_like | cd17321 | Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance ... |
34-436 | 3.16e-38 | ||||||||
Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial, fungal, and archaeal multidrug resistance (MDR) transporters including several proteins from Bacilli such as methylenomycin A resistance protein (also called MMR peptide), tetracycline resistance protein (TetB), and lincomycin resistance protein LmrB, as well as fungal proteins such as vacuolar basic amino acid transporters, which are involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine in Saccharomyces cerevisiae, and aminotriazole/azole resistance proteins. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, MMR confers resistance to the epoxide antibiotic methylenomycin while TetB resistance to tetracycline by an active tetracycline efflux. MMR-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340879 [Multi-domain] Cd Length: 370 Bit Score: 143.85 E-value: 3.16e-38
|
||||||||||||
AraJ | COG2814 | Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; |
20-426 | 1.93e-30 | ||||||||
Predicted arabinose efflux permease AraJ, MFS family [Carbohydrate transport and metabolism]; Pssm-ID: 442063 [Multi-domain] Cd Length: 348 Bit Score: 121.62 E-value: 1.93e-30
|
||||||||||||
MFS_MMR_MDR_like | cd17504 | Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) ... |
34-436 | 1.61e-27 | ||||||||
Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of putative multidrug resistance (MDR) transporters including Chlamydia trachomatis antiseptic resistance protein QacA_2, and Serratia sp. DD3 Bmr3. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341047 [Multi-domain] Cd Length: 371 Bit Score: 113.83 E-value: 1.61e-27
|
||||||||||||
MFS_TRI12_like | cd06179 | Fungal trichothecene efflux pump (TRI12) of the Major Facilitator Superfamily of transporters; ... |
32-438 | 1.18e-23 | ||||||||
Fungal trichothecene efflux pump (TRI12) of the Major Facilitator Superfamily of transporters; This family includes Fusarium sporotrichioides trichothecene efflux pump (TRI12), which may play a role in F. sporotrichioides self-protection against trichothecenes. TRI12 belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340868 [Multi-domain] Cd Length: 518 Bit Score: 104.25 E-value: 1.18e-23
|
||||||||||||
MFS_Azr1_MDR_like | cd17502 | Saccharomyces cerevisiae Azole resistance protein 1 (Azr1p), and similar multidrug resistance ... |
34-430 | 1.21e-23 | ||||||||
Saccharomyces cerevisiae Azole resistance protein 1 (Azr1p), and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of multidrug resistance (MDR) transporters including various Saccharomyces cerevisiae proteins such as azole resistance protein 1 (Azr1p), vacuolar basic amino acid transporter 1 (Vba1p), vacuolar basic amino acid transporter 5 (Vba5p), and Sge1p (also known as Nor1p, 10-N-nonyl acridine orange resistance protein, and crystal violet resistance protein). MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341045 [Multi-domain] Cd Length: 337 Bit Score: 101.87 E-value: 1.21e-23
|
||||||||||||
ProP | COG0477 | MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and ... |
19-306 | 2.08e-21 | ||||||||
MFS family permease, includes anhydromuropeptide permease AmpG [Carbohydrate transport and metabolism, Amino acid transport and metabolism, Inorganic ion transport and metabolism, General function prediction only]; Pssm-ID: 440245 [Multi-domain] Cd Length: 295 Bit Score: 94.49 E-value: 2.08e-21
|
||||||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
34-428 | 2.47e-20 | ||||||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 92.48 E-value: 2.47e-20
|
||||||||||||
MFS_MdtG_SLC18_like | cd17325 | bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ... |
66-427 | 4.00e-18 | ||||||||
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 86.09 E-value: 4.00e-18
|
||||||||||||
PRK14995 | PRK14995 | SmvA family efflux MFS transporter; |
92-437 | 1.58e-17 | ||||||||
SmvA family efflux MFS transporter; Pssm-ID: 184957 [Multi-domain] Cd Length: 495 Bit Score: 85.16 E-value: 1.58e-17
|
||||||||||||
MFS_YfmO_like | cd17474 | Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major ... |
37-427 | 8.67e-16 | ||||||||
Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major Facilitator Superfamily; This family is composed of Bacillus subtilis multidrug efflux protein YfmO, bacillibactin exporter YmfD/YmfE, uncharacterized MFS-type transporter YvmA, and similar proteins. YfmO acts to efflux copper or a copper complex, and could contribute to copper resistance. YmfD/YmfE is involved in secretion of bacillibactin. The YfmO-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341027 [Multi-domain] Cd Length: 374 Bit Score: 79.15 E-value: 8.67e-16
|
||||||||||||
MFS_MdfA_MDR_like | cd17320 | Multidrug transporter MdfA and similar multidrug resistance (MDR) transporters of the Major ... |
72-432 | 2.95e-15 | ||||||||
Multidrug transporter MdfA and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as MdfA (also called chloramphenicol resistance pump Cmr), EmrD, MdtM, MdtL, bicyclomycin resistance protein (also called sulfonamide resistance protein), and the uncharacterized inner membrane transport protein YdhC. EmrD is a proton-dependent secondary transporter, first identified as an efflux pump for uncouplers of oxidative phosphorylation. It expels a range of drug molecules and amphipathic compounds across the inner membrane of E. coli. Similarly, MdfA is a secondary multidrug transporter that exports a broad spectrum of structurally and electrically dissimilar toxic compounds. These MDR transporters are drug/H+ antiporters (DHA) belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340878 [Multi-domain] Cd Length: 379 Bit Score: 77.62 E-value: 2.95e-15
|
||||||||||||
PRK10504 | PRK10504 | putative transporter; Provisional |
36-288 | 1.51e-13 | ||||||||
putative transporter; Provisional Pssm-ID: 182502 [Multi-domain] Cd Length: 471 Bit Score: 72.84 E-value: 1.51e-13
|
||||||||||||
UhpC | COG2271 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
27-436 | 2.31e-13 | ||||||||
Sugar phosphate permease [Carbohydrate transport and metabolism]; Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 71.44 E-value: 2.31e-13
|
||||||||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
35-435 | 1.11e-12 | ||||||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 69.76 E-value: 1.11e-12
|
||||||||||||
MFS_NepI_like | cd17324 | Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator ... |
30-430 | 1.54e-12 | ||||||||
Purine ribonucleoside efflux pump NepI and similar transporters of the Major Facilitator Superfamily; This family is composed of purine efflux pumps such as Escherichia coli NepI and Bacillus subtilis PbuE, sugar efflux transporters such as Corynebacterium glutamicum arabinose efflux permease, multidrug resistance (MDR) transporters such as Streptomyces lividans chloramphenicol resistance protein (CmlR), and similar proteins. NepI and PbuE are involved in the efflux of purine ribonucleosides such as guanosine, adenosine and inosine, as well as purine bases like guanine, adenine, and hypoxanthine, and purine base analogs. They play a role in the maintenance of cellular purine base pools, as well as in protecting the cells and conferring resistance against toxic purine base analogs such as 6-mercaptopurine. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The NepI-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340882 [Multi-domain] Cd Length: 370 Bit Score: 69.12 E-value: 1.54e-12
|
||||||||||||
2_A_01_02 | TIGR00880 | Multidrug resistance protein; |
70-201 | 2.08e-12 | ||||||||
Multidrug resistance protein; Pssm-ID: 273318 [Multi-domain] Cd Length: 141 Bit Score: 64.59 E-value: 2.08e-12
|
||||||||||||
MFS_Tpo1_MDR_like | cd17323 | Yeast Polyamine transporter 1 (Tpo1) and similar multidrug resistance (MDR) transporters of ... |
86-203 | 2.28e-12 | ||||||||
Yeast Polyamine transporter 1 (Tpo1) and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of fungal multidrug resistance (MDR) transporters including several proteins from Saccharomyces cerevisiae such as polyamine transporters 1-4 (Tpo1-4), quinidine resistance proteins 1-3 (Qdr1-3), dityrosine transporter 1 (Dtr1), fluconazole resistance protein 1 (Flr1), and protein HOL1. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. For example, Flr1 confers resistance to the azole derivative fluconazole while Tpo1 confers resistance and adaptation to quinidine and ketoconazole. The polyamine transporters are involved in the detoxification of excess polyamines in the cytoplasm. Tpo1-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340881 [Multi-domain] Cd Length: 376 Bit Score: 68.76 E-value: 2.28e-12
|
||||||||||||
2A0115 | TIGR00895 | benzoate transport; [Transport and binding proteins, Carbohydrates, organic alcohols, and ... |
14-203 | 8.45e-10 | ||||||||
benzoate transport; [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] Pssm-ID: 273327 [Multi-domain] Cd Length: 398 Bit Score: 60.83 E-value: 8.45e-10
|
||||||||||||
efflux_Bcr_CflA | TIGR00710 | drug resistance transporter, Bcr/CflA subfamily; This subfamily of drug efflux proteins, a ... |
24-203 | 1.64e-09 | ||||||||
drug resistance transporter, Bcr/CflA subfamily; This subfamily of drug efflux proteins, a part of the major faciliator family, is predicted to have 12 membrane-spanning regions. Members with known activity include Bcr (bicyclomycin resistance protein) in E. coli, Flor (chloramphenicol and florfenicol resistance) in Salmonella typhimurium DT104, and CmlA (chloramphenicol resistance) in Pseudomonas sp. plasmid R1033. Pssm-ID: 273229 [Multi-domain] Cd Length: 385 Bit Score: 59.70 E-value: 1.64e-09
|
||||||||||||
MFS_arabinose_efflux_permease_like | cd17473 | Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; ... |
66-436 | 6.69e-09 | ||||||||
Putative arabinose efflux permease family transporters of the Major Facilitator Superfamily; This family includes a group of putative arabinose efflux permease family transporters, such as alpha proteobacterium quinolone resistance protein NorA (characterized Staphylococcus aureus Quinolone resistance protein NorA belongs to a different group), Desulfovibrio dechloracetivorans bacillibactin exporter, Vibrio aerogenes antiseptic resistance protein. The biological function of those transporters remain unclear. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341026 [Multi-domain] Cd Length: 374 Bit Score: 57.97 E-value: 6.69e-09
|
||||||||||||
PRK11102 | PRK11102 | Bcr/CflA family multidrug efflux MFS transporter; |
74-211 | 7.68e-09 | ||||||||
Bcr/CflA family multidrug efflux MFS transporter; Pssm-ID: 182964 [Multi-domain] Cd Length: 377 Bit Score: 57.62 E-value: 7.68e-09
|
||||||||||||
MFS_YfcJ_like | cd17489 | Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; ... |
68-435 | 4.94e-08 | ||||||||
Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli membrane proteins, YfcJ and YhhS, Bacillus subtilis uncharacterized MFS-type transporter YwoG, and similar proteins. YfcJ and YhhS are putative arabinose efflux transporters. YhhS has been implicated glyphosate resistance. YfcJ-like arabinose efflux transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341042 [Multi-domain] Cd Length: 367 Bit Score: 54.91 E-value: 4.94e-08
|
||||||||||||
MFS_ExuT_GudP_like | cd17319 | Hexuronate transporter, Glucarate transporter, and similar transporters of the Major ... |
27-430 | 7.84e-08 | ||||||||
Hexuronate transporter, Glucarate transporter, and similar transporters of the Major Facilitator Superfamily; This family is composed of predominantly bacterial transporters for hexuronate (ExuT), glucarate (GudP), galactarate (GarP), and galactonate (DgoT). They mediate the uptake of these compounds into the cell. They belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340877 [Multi-domain] Cd Length: 358 Bit Score: 54.50 E-value: 7.84e-08
|
||||||||||||
MFS_spinster_like | cd17328 | Protein spinster and spinster homologs of the Major Facilitator Superfamily of transporters; ... |
45-207 | 1.68e-07 | ||||||||
Protein spinster and spinster homologs of the Major Facilitator Superfamily of transporters; The protein spinster family includes Drosophila protein spinster, its vertebrate homologs, and similar proteins. Humans contain three homologs called protein spinster homologs 1 (SPNS1), 2 (SPNS2), and 3 (SPNS3). Protein spinster and its homologs may be sphingolipid transporters that play central roles in endosomes and/or lysosomes storage. SPNS2 is also called sphingosine 1-phosphate (S1P) transporter and is required for migration of myocardial precursors. S1P is a secreted lipid mediator that plays critical roles in cardiovascular, immunological, and neural development and function. The spinster-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340886 [Multi-domain] Cd Length: 405 Bit Score: 53.39 E-value: 1.68e-07
|
||||||||||||
MFS_MdtG_MDR_like | cd17391 | Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the ... |
93-187 | 1.47e-06 | ||||||||
Multidrug resistance protein MdtG and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli multidrug resistance protein MdtG, Streptococcus pneumoniae multidrug resistance efflux pump PmrA, and similar multidrug resistance (MDR) transporters from bacteria. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtG confers resistance to fosfomycin and deoxycholate. PmrA serves as an efflux pump for various substrates and is associated with fluoroquinolone resistance. MdtG-like MDR transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340949 [Multi-domain] Cd Length: 380 Bit Score: 50.34 E-value: 1.47e-06
|
||||||||||||
MFS_PcaK_like | cd17365 | 4-hydroxybenzoate transporter PcaK and similar transporters of the Major Facilitator ... |
73-203 | 1.64e-06 | ||||||||
4-hydroxybenzoate transporter PcaK and similar transporters of the Major Facilitator Superfamily; This aromatic acid:H(+) symporter subfamily includes Acinetobacter sp. 4-hydroxybenzoate transporter PcaK, Pseudomonas putida gallate transporter (GalT), Corynebacterium glutamicum gentisate transporter (GenK), Nocardioides sp. 1-hydroxy-2-naphthoate transporter (PhdT), Escherichia coli 3-(3-hydroxy-phenyl)propionate (3HPP) transporter (MhpT), and similar proteins. These transporters are involved in the uptake across the cytoplasmic membrane of specific aromatic compounds such as 4-hydroxybenzoate, gallate, gentisate (2,5-dihydroxybenzoate), 1-hydroxy-2-naphthoate, and 3HPP, respectively. The PcaK-like aromatic acid:H(+) symporter subfamily belongs to the Metazoan Synaptic Vesicle Glycoprotein 2 (SV2) and related small molecule transporter family (SV2-like) of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340923 [Multi-domain] Cd Length: 351 Bit Score: 50.28 E-value: 1.64e-06
|
||||||||||||
MFS_Amf1_MDR_like | cd17476 | Saccharomyces cerevisiae low affinity ammonium transporter Amf1p/YOR378W, aminotriazole ... |
33-205 | 2.89e-06 | ||||||||
Saccharomyces cerevisiae low affinity ammonium transporter Amf1p/YOR378W, aminotriazole resistance protein Atr1p, and similar transporters of the Major Facilitator Superfamily; Saccharomyces cerevisiae Amf1p/Ammonium Facilitator 1/YOR378W functions as a low affinity NH4+ transporter. S. cerevisiae aminotriazole resistance protein (Atr1p) is required for controlling sensitivity to aminotriazole; it is a putative component of the machinery responsible for pumping aminotriazole (and possibly other toxic compounds) out of the cell. This subfamily also includes S. cerevisiae YMR279C, a putative boron transporter involved in boron efflux and resistance, and Kluyveromyces lactis Knq1p which is involved in oxidative stress response and iron homeostasis. Amf1p, Atr1p, and YMR279C have been classified as group 1 members of the DHA2 (Drug:H+ Antiporter family 2) family, K. lactis Knq1 as group 2. This subfamily also includes two Aspergillus terreus terrein biosynthesis cluster proteins, efflux pump TerG and TerJ which may be required for efficient secretion of terrein or other secondary metabolites produced by the terrein gene cluster. The Amf1p-like subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341029 [Multi-domain] Cd Length: 362 Bit Score: 49.57 E-value: 2.89e-06
|
||||||||||||
MelB | COG2211 | Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; |
216-434 | 4.92e-06 | ||||||||
Na+/melibiose symporter or related transporter [Carbohydrate transport and metabolism]; Pssm-ID: 441813 [Multi-domain] Cd Length: 447 Bit Score: 49.13 E-value: 4.92e-06
|
||||||||||||
NarK | COG2223 | Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; |
27-434 | 1.27e-05 | ||||||||
Nitrate/nitrite transporter NarK [Inorganic ion transport and metabolism]; Pssm-ID: 441825 [Multi-domain] Cd Length: 392 Bit Score: 47.57 E-value: 1.27e-05
|
||||||||||||
MFS_YfmO_like | cd17474 | Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major ... |
86-202 | 1.33e-05 | ||||||||
Bacillus subtilis multidrug efflux protein YfmO and similar transporters of the Major Facilitator Superfamily; This family is composed of Bacillus subtilis multidrug efflux protein YfmO, bacillibactin exporter YmfD/YmfE, uncharacterized MFS-type transporter YvmA, and similar proteins. YfmO acts to efflux copper or a copper complex, and could contribute to copper resistance. YmfD/YmfE is involved in secretion of bacillibactin. The YfmO-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341027 [Multi-domain] Cd Length: 374 Bit Score: 47.57 E-value: 1.33e-05
|
||||||||||||
MFS_SLC46_TetA_like | cd17330 | Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and ... |
66-203 | 4.04e-05 | ||||||||
Eukaryotic Solute carrier 46 (SLC46) family, Bacterial Tetracycline resistance proteins, and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of the eukaryotic proteins MFSD9, MFSD10, MFSD14, and SLC46 family proteins, as well as bacterial multidrug resistance (MDR) transporters such as tetracycline resistance protein TetA and multidrug resistance protein MdtG. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. TetA proteins confer resistance to tetracycline while MdtG confers resistance to fosfomycin and deoxycholate. The Solute carrier 46 (SLC46) family is composed of three vertebrate members (SLC46A1, SLC46A2, and SLC46A3), the best-studied of which is SLC46A1, which functions both as an intestinal proton-coupled high-affinity folate transporter involved in the absorption of folates and as an intestinal heme transporter which mediates heme uptake. MFSD10 facilitates the uptake of organic anions such as some non-steroidal anti-inflammatory drugs (NSAIDs) and confers resistance to such NSAIDs. The SLC46/TetA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340888 [Multi-domain] Cd Length: 349 Bit Score: 46.03 E-value: 4.04e-05
|
||||||||||||
TRI12 | pfam06609 | Fungal trichothecene efflux pump (TRI12); This family consists of several fungal specific ... |
44-275 | 4.90e-05 | ||||||||
Fungal trichothecene efflux pump (TRI12); This family consists of several fungal specific trichothecene efflux pump proteins. Many of the genes involved in trichothecene toxin biosynthesis in Fusarium sporotrichioides are present within a gene cluster.It has been suggested that TRI12 may play a role in F. sporotrichioides self-protection against trichothecenes. Pssm-ID: 115279 [Multi-domain] Cd Length: 598 Bit Score: 46.20 E-value: 4.90e-05
|
||||||||||||
emrD | PRK11652 | multidrug transporter EmrD; |
71-209 | 8.65e-05 | ||||||||
multidrug transporter EmrD; Pssm-ID: 183259 [Multi-domain] Cd Length: 394 Bit Score: 44.90 E-value: 8.65e-05
|
||||||||||||
PRK09874 | PRK09874 | multidrug efflux MFS transporter MdtG; |
93-208 | 9.38e-05 | ||||||||
multidrug efflux MFS transporter MdtG; Pssm-ID: 182127 [Multi-domain] Cd Length: 408 Bit Score: 44.91 E-value: 9.38e-05
|
||||||||||||
MFS_MdtH_MDR_like | cd17329 | Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the ... |
74-430 | 1.14e-04 | ||||||||
Multidrug resistance protein MdtH and similar multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli MdtH and similar multidrug resistance (MDR) transporters from bacteria and archaea, many of which remain uncharacterized. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. MdtH confers resistance to norfloxacin and enoxacin. MdtH-like MDR transporters belong to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340887 [Multi-domain] Cd Length: 376 Bit Score: 44.53 E-value: 1.14e-04
|
||||||||||||
MFS_1 | pfam07690 | Major Facilitator Superfamily; |
290-436 | 1.80e-04 | ||||||||
Major Facilitator Superfamily; Pssm-ID: 429598 [Multi-domain] Cd Length: 344 Bit Score: 43.95 E-value: 1.80e-04
|
||||||||||||
UhpC | COG2271 | Sugar phosphate permease [Carbohydrate transport and metabolism]; |
59-205 | 1.85e-04 | ||||||||
Sugar phosphate permease [Carbohydrate transport and metabolism]; Pssm-ID: 441872 [Multi-domain] Cd Length: 363 Bit Score: 43.71 E-value: 1.85e-04
|
||||||||||||
MFS_SLC22 | cd17317 | Solute carrier 22 (SLC22) family of organic cation/anion/zwitterion transporters of the Major ... |
66-205 | 2.30e-04 | ||||||||
Solute carrier 22 (SLC22) family of organic cation/anion/zwitterion transporters of the Major Facilitator Superfamily; The Solute carrier 22 (SLC22) family of organic cation/anion/zwitterion transporters includes organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). SLC22 transporters interact with a variety of compounds that include drugs of abuse, environmental toxins, opioid analgesics, antidepressant and anxiolytic agents, and neurotransmitters and their metabolites. The SLC22 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340875 [Multi-domain] Cd Length: 331 Bit Score: 43.34 E-value: 2.30e-04
|
||||||||||||
MFS_FEN2_like | cd17327 | Pantothenate transporter FEN2 and similar transporters of the Major Facilitator Superfamily; ... |
26-187 | 2.78e-04 | ||||||||
Pantothenate transporter FEN2 and similar transporters of the Major Facilitator Superfamily; This family is composed of Saccharomyces cerevisiae pantothenate transporter FEN2 (or fenpropimorph resistance protein 2) and similar proteins from fungi and bacteria including fungal vitamin H transporter, allantoate permease, and high-affinity nicotinic acid transporter, as well as Pseudomonas putida phthalate transporter and nicotinate degradation protein T (nicT). These proteins are involved in the uptake into the cell of specific substrates such as pathothenate, biotin, allantoate, and nicotinic acid, among others. The FEN2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340885 [Multi-domain] Cd Length: 406 Bit Score: 43.39 E-value: 2.78e-04
|
||||||||||||
MFS_MefA_like | cd06173 | Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of ... |
26-201 | 2.80e-04 | ||||||||
Macrolide efflux protein A and similar proteins of the Major Facilitator Superfamily of transporters; This family is composed of Streptococcus pyogenes macrolide efflux protein A (MefA) and similar transporters, many of which remain uncharacterized. Some members may be multidrug resistance (MDR) transporters, which are drug/H+ antiporters (DHAs) that mediate the efflux of a variety of drugs and toxic compounds, conferring resistance to these compounds. MefA confers resistance to 14-membered macrolides including erythromycin and to 15-membered macrolides. It functions as an efflux pump to regulate intracellular macrolide levels. The MefA-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340863 [Multi-domain] Cd Length: 383 Bit Score: 43.37 E-value: 2.80e-04
|
||||||||||||
MFS_FucP_MFSD4_like | cd17333 | Bacterial fucose permease, eukaryotic Major facilitator superfamily domain-containing protein ... |
26-201 | 2.86e-04 | ||||||||
Bacterial fucose permease, eukaryotic Major facilitator superfamily domain-containing protein 4, and similar proteins; This family is composed of bacterial L-fucose permease (FucP), eukaryotic Major facilitator superfamily domain-containing protein 4 (MFSD4) proteins, and similar proteins. L-fucose permease facilitates the uptake of L-fucose across the boundary membrane with the concomitant transport of protons into the cell; it can also transport L-galactose and D-arabinose. The MFSD4 subfamily consists of two vertebrate members: MFSD4A and MFSD4B. The function of MFSD4A is unknown. MFSD4B is more commonly know as Sodium-dependent glucose transporter 1 (NaGLT1), a primary fructose transporter in rat renal brush-border membranes that also facilitates sodium-independent urea uptake. The FucP/MFSD4 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340891 [Multi-domain] Cd Length: 372 Bit Score: 43.08 E-value: 2.86e-04
|
||||||||||||
MFS_SLC17 | cd17318 | Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily of transporters; The ... |
66-187 | 2.93e-04 | ||||||||
Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily of transporters; The Solute carrier 17 (SLC17) family is primarily involved in the transport of organic anions. There are nime human proteins belonging to this family including: the type I phosphate transporters (SLC17A1-4) that were initially identified as sodium-dependent inorganic phosphate (Pi) transporters but are now known to be involved in tha transport of organic anions; lysosomal acidic sugar transporter (SLC17A5 or sialin), vesicular glutamate transporters (VGluT1#3 or SLC17A7, SLC17A6, and SLC17A8, respectively), and a vesicular nucleotide transporter (VNUT or SLC17A9). SLC17A1 and SLC17A3 have roles in the transport of urate and para-aminohippurate, respectively. The SLC17 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340876 [Multi-domain] Cd Length: 389 Bit Score: 43.38 E-value: 2.93e-04
|
||||||||||||
FucP | COG0738 | Fucose permease [Carbohydrate transport and metabolism]; |
82-196 | 3.52e-04 | ||||||||
Fucose permease [Carbohydrate transport and metabolism]; Pssm-ID: 440501 [Multi-domain] Cd Length: 391 Bit Score: 42.92 E-value: 3.52e-04
|
||||||||||||
MFS_SV2_like | cd17316 | Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the ... |
71-203 | 4.59e-04 | ||||||||
Metazoan Synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters of the Major Facilitator Superfamily; This family is composed of metazoan synaptic vesicle glycoprotein 2 (SV2) and related small molecule transporters including those that transport inorganic phosphate (Pht), aromatic compounds (PcaK and related proteins), proline/betaine (ProP), alpha-ketoglutarate (KgtP), citrate (CitA), shikimate (ShiA), and cis,cis-muconate (MucK), among others. SV2 is a transporter-like protein that serves as the receptor for botulinum neurotoxin A (BoNT/A), one of seven neurotoxins produced by the bacterium Clostridium botulinum. BoNT/A blocks neurotransmitter release by cleaving synaptosome-associated protein of 25 kD (SNAP-25) within presynaptic nerve terminals. Also included in this family is synaptic vesicle 2 (SV2)-related protein (SVOP) and similar proteins. SVOP is a transporter-like nucleotide binding protein that localizes to neurotransmitter-containing vesicles. The SV2-like family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340874 [Multi-domain] Cd Length: 353 Bit Score: 42.59 E-value: 4.59e-04
|
||||||||||||
MFS_MdtG_SLC18_like | cd17325 | bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator ... |
66-201 | 4.63e-04 | ||||||||
bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily of transporters; This family is composed of eukaryotic solute carrier 18 (SLC18) family transporters and related bacterial multidrug resistance (MDR) transporters including several proteins from Escherichia coli such as multidrug resistance protein MdtG, from Bacillus subtilis such as multidrug resistance proteins 1 (Bmr1) and 2 (Bmr2), and from Staphylococcus aureus such as quinolone resistance protein NorA. The family also includes Escherichia coli arabinose efflux transporters YfcJ and YhhS. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. The SLC18 transporter family includes vesicular monoamine transporters (VAT1 and VAT2), vesicular acetylcholine transporter (VAChT), and SLC18B1, which is proposed to be a vesicular polyamine transporter (VPAT). The MdtG/SLC18 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340883 [Multi-domain] Cd Length: 375 Bit Score: 42.56 E-value: 4.63e-04
|
||||||||||||
perm_prefix_1 | NF038403 | permease prefix domain 1; The permease prefix domain 1 is found as the N-terminal domain of ... |
454-491 | 1.04e-03 | ||||||||
permease prefix domain 1; The permease prefix domain 1 is found as the N-terminal domain of putative permeases resembling ABC transporter permeases, and also of hypothetical proteins of unknown function. In at least some permease families, this prefix domain is only variably present, and may be replaced by a different, seemingly unrelated prefix domain. Pssm-ID: 468503 Cd Length: 59 Bit Score: 37.49 E-value: 1.04e-03
|
||||||||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
289-430 | 1.70e-03 | ||||||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 40.87 E-value: 1.70e-03
|
||||||||||||
PRK11551 | PRK11551 | putative 3-hydroxyphenylpropionic transporter MhpT; Provisional |
93-209 | 2.53e-03 | ||||||||
putative 3-hydroxyphenylpropionic transporter MhpT; Provisional Pssm-ID: 236927 [Multi-domain] Cd Length: 406 Bit Score: 40.33 E-value: 2.53e-03
|
||||||||||||
MFS_YxlH_like | cd17490 | Bacillus subtilis YxlH and similar transporters of the Major Facilitator Superfamily; This ... |
66-188 | 3.06e-03 | ||||||||
Bacillus subtilis YxlH and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Bacillus subtilis YxlH uncharacterized MFS-type transporter YxlH and similar proteins. The biological function of YxlH remains unclear. The YxlH-like subfamily belongs to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341043 [Multi-domain] Cd Length: 371 Bit Score: 39.90 E-value: 3.06e-03
|
||||||||||||
MFS_SLC17A9_like | cd17380 | Solute carrier family 17 member 9 and similar proteins of the Major Facilitator Superfamily of ... |
103-187 | 3.31e-03 | ||||||||
Solute carrier family 17 member 9 and similar proteins of the Major Facilitator Superfamily of transporters; This subfamily includes solute carrier family 17 member 9 (SLC17A9) and similar proteins including plant inorganic phosphate transporters (PHT4) that are also probably anion transporters. SLC17A9, also called vesicular nucleotide transporter (VNUT), is involved in vesicular storage and exocytosis of ATP. It facilitates the accumulation of ATP and other nucleotides in secretory vesicles such as adrenal chromaffin granules and synaptic vesicles. It also functions as a lysosomal ATP transporter and regulates cell viability. Plant PHT4 family transporters mediate the transport of inorganic phosphate and may also transport organic anions. The Arabidopsis protein AtPHT4;4 is a chloroplast-localized ascorbate transporter. PHT4 proteins show differential expression that suggests specialized functions. The SLC17A9-like subfamily belongs to the Solute carrier 17 (SLC17) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340938 [Multi-domain] Cd Length: 361 Bit Score: 39.85 E-value: 3.31e-03
|
||||||||||||
MFS | cd06174 | Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse ... |
27-200 | 3.84e-03 | ||||||||
Major Facilitator Superfamily; The Major Facilitator Superfamily (MFS) is a large and diverse group of secondary transporters that includes uniporters, symporters, and antiporters. MFS proteins facilitate the transport across cytoplasmic or internal membranes of a variety of substrates including ions, sugar phosphates, drugs, neurotransmitters, nucleosides, amino acids, and peptides. They do so using the electrochemical potential of the transported substrates. Uniporters transport a single substrate, while symporters and antiporters transport two substrates in the same or in opposite directions, respectively, across membranes. MFS proteins are typically 400 to 600 amino acids in length, and the majority contain 12 transmembrane alpha helices (TMs) connected by hydrophilic loops. The N- and C-terminal halves of these proteins display weak similarity and may be the result of a gene duplication/fusion event. Based on kinetic studies and the structures of a few bacterial superfamily members, GlpT (glycerol-3-phosphate transporter), LacY (lactose permease), and EmrD (multidrug transporter), MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Bacterial members function primarily for nutrient uptake, and as drug-efflux pumps to confer antibiotic resistance. Some MFS proteins have medical significance in humans such as the glucose transporter Glut4, which is impaired in type II diabetes, and glucose-6-phosphate transporter (G6PT), which causes glycogen storage disease when mutated. Pssm-ID: 349949 [Multi-domain] Cd Length: 378 Bit Score: 39.72 E-value: 3.84e-03
|
||||||||||||
MFS_OPA_SLC37 | cd17312 | Organophosphate:Pi antiporter/Solute Carrier family 37 of the Major Facilitator Superfamily of ... |
67-207 | 3.92e-03 | ||||||||
Organophosphate:Pi antiporter/Solute Carrier family 37 of the Major Facilitator Superfamily of transporters; Organophosphate:Pi antiporters (OPA) are integral membrane proteins responsible for the transport of specific organophosphates or sugar phosphates across biological membranes with the simultaneous translocation of inorganic phosphate into the opposite direction. The OPA family is also called solute carrier family 37 (SLC37) in vertebrates. Members include glucose-6-phosphate (Glc6P) transporter (also called translocase or exchanger), glycerol-3-phosphate permease, 2-phosphonopropionate transporter, phosphoglycerate transporter, as well as membrane sensor protein UhpC from Escherichia coli. UhpC is both a sensor and a transport protein; it recognizes external Glc6P and induces transport by UhpT, and it can also transport Glc6P. Vertebrates contain four SLC37 or sugar-phosphate exchange (SPX) proteins: SLC37A1 (SPX1), SLC37A2 (SPX2), SLC37A3 (SPX3), and SLC37AA4 (SPX4). The OPA/SLC37 family belongs to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340870 [Multi-domain] Cd Length: 364 Bit Score: 39.56 E-value: 3.92e-03
|
||||||||||||
MFS_YcaD_like | cd17477 | YcaD and similar transporters of the Major Facilitator Superfamily; This family is composed of ... |
6-199 | 4.10e-03 | ||||||||
YcaD and similar transporters of the Major Facilitator Superfamily; This family is composed of Escherichia coli MFS-type transporter YcaD, Bacillus subtilis MFS-type transporter YfkF, and similar proteins. They are uncharacterized transporters belonging to the Major Facilitator Superfamily (MFS) of membrane transport proteins, which are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341030 [Multi-domain] Cd Length: 360 Bit Score: 39.46 E-value: 4.10e-03
|
||||||||||||
2A0104 | TIGR00881 | phosphoglycerate transporter family protein; [Transport and binding proteins, Carbohydrates, ... |
65-435 | 5.31e-03 | ||||||||
phosphoglycerate transporter family protein; [Transport and binding proteins, Carbohydrates, organic alcohols, and acids] Pssm-ID: 273319 [Multi-domain] Cd Length: 379 Bit Score: 39.28 E-value: 5.31e-03
|
||||||||||||
MFS_YfcJ_like | cd17489 | Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; ... |
61-201 | 5.60e-03 | ||||||||
Escherichia coli YfcJ, YhhS, and similar transporters of the Major Facilitator Superfamily; This subfamily is composed of Escherichia coli membrane proteins, YfcJ and YhhS, Bacillus subtilis uncharacterized MFS-type transporter YwoG, and similar proteins. YfcJ and YhhS are putative arabinose efflux transporters. YhhS has been implicated glyphosate resistance. YfcJ-like arabinose efflux transporters belong to the bacterial MdtG-like and eukaryotic solute carrier 18 (SLC18) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341042 [Multi-domain] Cd Length: 367 Bit Score: 39.11 E-value: 5.60e-03
|
||||||||||||
MFS_MMR_MDR_like | cd17504 | Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) ... |
22-193 | 5.60e-03 | ||||||||
Methylenomycin A resistance protein (also called MMR peptide)-like multidrug resistance (MDR) transporters of the Major Facilitator Superfamily; This subfamily is composed of putative multidrug resistance (MDR) transporters including Chlamydia trachomatis antiseptic resistance protein QacA_2, and Serratia sp. DD3 Bmr3. MDR transporters are drug/H+ antiporters (DHA) that mediate the efflux of a variety of drugs and toxic compounds, and confer resistance to these compounds. This subfamily belongs to the Methylenomycin A resistance protein (also called MMR peptide) and similar multidrug resistance (MDR) transporters (MMR-like MDR transporter) family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 341047 [Multi-domain] Cd Length: 371 Bit Score: 39.10 E-value: 5.60e-03
|
||||||||||||
PRK11043 | PRK11043 | Bcr/CflA family multidrug efflux MFS transporter; |
74-198 | 5.63e-03 | ||||||||
Bcr/CflA family multidrug efflux MFS transporter; Pssm-ID: 182924 [Multi-domain] Cd Length: 401 Bit Score: 39.11 E-value: 5.63e-03
|
||||||||||||
MFS_SLCO4_OATP4 | cd17403 | Solute carrier organic anion transporter 4 family of the Major Facilitator Superfamily of ... |
26-175 | 8.73e-03 | ||||||||
Solute carrier organic anion transporter 4 family of the Major Facilitator Superfamily of transporters; The Solute carrier organic anion transporter 4 (SLCO4) or Organic anion transporting polypeptide 4 (OATP4) family contains two families: OATP4A and OATP4C, each containing one mammalian member, OATP4A1 and OATP4C1, respectively. OATP4A1 (encoded by SLCO4A1), is ubiquitously expressed and mediates the Na(+)-independent transport of the thyroid hormones T3 (triiodo-L-thyronine), T4 (thyroxine) and rT3, and other organic anions such as estrone sulfate and taurocholate. OATP4C1 (encoded by SLCO4C1) is capable of transporting pharmacological substances such as digoxin, ouabain, thyroxine, methotrexate, cAMP, and uremic toxins, which accumulate in patients with chronic kidney diseases (CKDs). The SLCO4/OATP4 family belongs to the Solute carrier organic anion transporter [SLCO, also called organic anion transporting polypeptides (OATPs) or Solute carrier family 21] family of the Major Facilitator Superfamily (MFS) of transporters. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. Pssm-ID: 340961 [Multi-domain] Cd Length: 420 Bit Score: 38.77 E-value: 8.73e-03
|
||||||||||||
Blast search parameters | ||||
|