zinc metalloprotease HtpX is an integral membrane metallopeptidase that plays a central role in protein quality control by preventing the accumulation of misfolded proteins in the membrane
Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase; This HtpX family of ...
52-298
7.08e-109
Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase; This HtpX family of peptidase M48 subfamily B includes uncharacterized HtpX homologs and consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and collaborating with FtsH, a membrane-bound and ATP-dependent protease, to eliminate them. HtpX, a zinc metalloprotease with an active site motif HEXXH, has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not.
Pssm-ID: 320699 [Multi-domain] Cd Length: 246 Bit Score: 315.98 E-value: 7.08e-109
Peptidase family M48; Peptidase_M48 is the largely extracellular catalytic region of CAAX ...
76-298
7.05e-28
Peptidase family M48; Peptidase_M48 is the largely extracellular catalytic region of CAAX prenyl protease homologs such as Human FACE-1 protease. These are metallopeptidases, with the characteriztic HExxH motif giving the two histidine-zinc-ligands and an adjacent glutamate on the next helix being the third. The whole molecule folds to form a deep groove/cleft into which the substrate can fit.
Pssm-ID: 426263 [Multi-domain] Cd Length: 201 Bit Score: 106.75 E-value: 7.05e-28
Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase; This HtpX family of ...
52-298
7.08e-109
Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase; This HtpX family of peptidase M48 subfamily B includes uncharacterized HtpX homologs and consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and collaborating with FtsH, a membrane-bound and ATP-dependent protease, to eliminate them. HtpX, a zinc metalloprotease with an active site motif HEXXH, has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not.
Pssm-ID: 320699 [Multi-domain] Cd Length: 246 Bit Score: 315.98 E-value: 7.08e-109
Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase; This HtpX family of ...
29-300
5.47e-96
Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase; This HtpX family of peptidase M48 subfamily B includes uncharacterized HtpX homologs and consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and collaborating with FtsH, a membrane-bound and ATP-dependent protease, to eliminate them. HtpX, a zinc metalloprotease with an active site motif HEXXH, has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not.
Pssm-ID: 320695 [Multi-domain] Cd Length: 266 Bit Score: 284.00 E-value: 5.47e-96
HtpX-like membrane-bound metallopeptidase; This family contains peptidase M48 subfamily B, ...
57-298
4.66e-72
HtpX-like membrane-bound metallopeptidase; This family contains peptidase M48 subfamily B, also known as HtpX, which consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX, an integral membrane (IM) metallopeptidase, is widespread in bacteria and archaea, and plays a central role in protein quality control by preventing the accumulation of misfolded proteins in the membrane. Its expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and eliminating them by collaborating with FtsH, a membrane-bound and ATP-dependent protease. HtpX contains the zinc binding motif (HEXXH), has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not. Mutation studies of HtpX-like M48 metalloprotease from Leptospira interrogans (LA4131) has been shown to result in altered expression of a subset of metal toxicity and stress response genes.
Pssm-ID: 320686 [Multi-domain] Cd Length: 183 Bit Score: 220.20 E-value: 4.66e-72
Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase; This HtpX family of ...
61-297
2.31e-42
Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase; This HtpX family of peptidase M48 subfamily B includes uncharacterized HtpX homologs and consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and collaborating with FtsH, a membrane-bound and ATP-dependent protease, to eliminate them. HtpX, a zinc metalloprotease with an active site motif HEXXH, has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not.
Pssm-ID: 320698 [Multi-domain] Cd Length: 229 Bit Score: 145.40 E-value: 2.31e-42
Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase; This family contains ...
50-298
2.99e-42
Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase; This family contains peptidase M48 subfamily B, also known as HtpX, which consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX, an integral membrane (IM) metallopeptidase, is widespread in bacteria and archaea, and plays a central role in protein quality control by preventing the accumulation of misfolded proteins in the membrane. Its expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and eliminating them by collaborating with FtsH, a membrane-bound and ATP-dependent protease. HtpX contains the zinc binding motif (HEXXH), has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not. Mutation studies of HtpX-like M48 metalloprotease from Leptospira interrogans (LA4131) has been shown to result in altered expression of a subset of metal toxicity and stress response genes.
Pssm-ID: 320694 [Multi-domain] Cd Length: 240 Bit Score: 145.42 E-value: 2.99e-42
Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase; This HtpX family of ...
44-297
5.18e-39
Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase; This HtpX family of peptidase M48 subfamily B includes uncharacterized HtpX homologs and consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and collaborating with FtsH, a membrane-bound and ATP-dependent protease, to eliminate them. HtpX, a zinc metalloprotease with an active site motif HEXXH, has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not.
Pssm-ID: 320697 [Multi-domain] Cd Length: 216 Bit Score: 136.17 E-value: 5.18e-39
Peptidase family M48; Peptidase_M48 is the largely extracellular catalytic region of CAAX ...
76-298
7.05e-28
Peptidase family M48; Peptidase_M48 is the largely extracellular catalytic region of CAAX prenyl protease homologs such as Human FACE-1 protease. These are metallopeptidases, with the characteriztic HExxH motif giving the two histidine-zinc-ligands and an adjacent glutamate on the next helix being the third. The whole molecule folds to form a deep groove/cleft into which the substrate can fit.
Pssm-ID: 426263 [Multi-domain] Cd Length: 201 Bit Score: 106.75 E-value: 7.05e-28
Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase; This HtpX family of ...
43-299
1.61e-22
Peptidase M48 subfamily B HtpX-like membrane-bound metallopeptidase; This HtpX family of peptidase M48 subfamily B includes uncharacterized HtpX homologs and consists of proteins smaller than Ste24p, with homology restricted to the C-terminal half of Ste24p. HtpX expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins. HtpX participates in the proteolytic quality control of these misfolded proteins by undergoing self-degradation and collaborating with FtsH, a membrane-bound and ATP-dependent protease, to eliminate them. HtpX, a zinc metalloprotease with an active site motif HEXXH, has an FtsH-like topology, and is capable of introducing endoproteolytic cleavages into SecY (also an FtsH substrate). However, HtpX does not have an ATPase activity and will only act against cytoplasmic regions of a target membrane protein. Thus, HtpX and FtsH have overlapping and/or complementary functions, which are especially important at high temperature; in E. coli and Xylella fastidiosa, HtpX is heat-inducible, while in Streptococcus gordonii it is not.
Pssm-ID: 320696 [Multi-domain] Cd Length: 203 Bit Score: 92.76 E-value: 1.61e-22
Peptidase M56-like, integral membrane metallopeptidase in bacteria; This family contains ...
89-299
6.58e-20
Peptidase M56-like, integral membrane metallopeptidase in bacteria; This family contains peptidase M56, which includes zinc metalloprotease domain in MecR1 as well as BlaR1. MecR1 is a transmembrane beta-lactam sensor/signal transducer protein that regulates the expression of an altered penicillin-binding protein PBP2a, which resists inactivation by beta-lactam antibiotics, in methicillin-resistant Staphylococcus aureus (MRSA). BlaR1 regulates the inducible expression of a class A beta-lactamase that hydrolytically destroys certain beta-lactam antibiotics in MRSA. Both, MecR1 and BlaR1, are transmembrane proteins that consist of four transmembrane helices, a cytoplasmic zinc protease domain, and the soluble C-terminal extracellular sensor domain, and are highly similar in sequence and function. The signal for protein expression is transmitted by site-specific proteolytic cleavage of both the transducer, which auto-activates, and the repressor, which is inactivated, unblocking gene transcription. All members contain the zinc metalloprotease motif (HEXXH). Homologs of this peptidase domain are also found in a number of other bacterial genome sequences, most of which are as yet uncharacterized.
Pssm-ID: 320688 [Multi-domain] Cd Length: 188 Bit Score: 85.20 E-value: 6.58e-20
M48 Ste24 endopeptidase-like, integral membrane metallopeptidase; This family contains ...
69-299
1.11e-15
M48 Ste24 endopeptidase-like, integral membrane metallopeptidase; This family contains peptidase M48 family Ste24p-like proteins that are as yet uncharacterized, but probably function as intracellular, membrane-associated zinc metalloproteases; they all contain the HEXXH Zn-binding motif, which is critical for Ste24p activity. They likely remove the C-terminal three residues of farnesylated proteins proteolytically and are possibly associated with the endoplasmic reticulum and golgi. Some members also contain ankyrin domains which occur in very diverse families of proteins and mediate protein-protein interactions.
Pssm-ID: 320684 [Multi-domain] Cd Length: 199 Bit Score: 73.80 E-value: 1.11e-15
Peptidase M48 subfamily A, a type 1 CaaX endopeptidase; This family contains peptidase family ...
34-299
3.06e-14
Peptidase M48 subfamily A, a type 1 CaaX endopeptidase; This family contains peptidase family M48 subfamily A which includes a number of well-characterized genes such as those found in humans (ZMPSTE24, also known as farnesylated protein-converting enzyme 1 or FACE-1 or Hs Ste24), Taenia solium metacestode (TsSte24p), Arabidopsis (AtSte24) and yeast (Ste24p). Ste24p contains the zinc metalloprotease motif (HEXXH), likely exposed on the cytoplasmic side. It is thought to be intimately associated with the endoplasmic reticulum (ER), regardless of whether its genes possess the conventional signal motif (KKXX) in the C-terminal. Proteins in this family proteolytically remove the C-terminal three residues of farnesylated proteins. Ste24p is involved in the post-translational processing of prelamin A to mature lamin A, a major component of the nuclear envelope. ZmpSte24 deficiency causes an accumulation of prelamin A leading to lipodystrophy and other disease phenotypes, while mutations in this gene or in that encoding its substrate, prelamin A, result in a series of human inherited diseases known as laminopathies, the most severe of which are Hutchinson Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) which arise due to unsuccessful maturation of prelamin A. Two forms of mandibuloacral dysplasia, a condition that causes a variety of abnormalities involving bone development, skin pigmentation, and fat distribution, are caused by mutations in two different genes; mutations in the LMNA gene, which normally provides instructions for making lamin A and lamin C, cause mandibuloacral dysplasia with A-type lipodystrophy (MAD-A), and mutations in the ZMPSTE24 gene cause mandibuloacral dysplasia with B-type lipodystrophy (MAD-B). Within cells, these genes are involved in maintaining the structure of the nucleus and may play a role in many cellular processes. Certain HIV protease inhibitors have been shown to inhibit the enzymatic activity of ZMPSTE24, but not enzymes involved in prelamin A processing.
Pssm-ID: 320702 [Multi-domain] Cd Length: 405 Bit Score: 72.51 E-value: 3.06e-14
M48 Ste24 endopeptidase-like, integral membrane metallopeptidase; This family contains ...
72-298
7.92e-14
M48 Ste24 endopeptidase-like, integral membrane metallopeptidase; This family contains peptidase M48-like proteins that are as yet uncharacterized, but probably function as intracellular, membrane-associated zinc metalloproteases; they all contain the HEXXH Zn-binding motif, which is critical for Ste24p activity. They likely remove the C-terminal three residues of farnesylated proteins proteolytically and are possibly associated with the endoplasmic reticulum and golgi.
Pssm-ID: 320687 [Multi-domain] Cd Length: 160 Bit Score: 67.96 E-value: 7.92e-14
Peptidase M48C Ste24p loiP-like, integral membrane protein; This subfamily contains peptidase ...
100-300
5.40e-12
Peptidase M48C Ste24p loiP-like, integral membrane protein; This subfamily contains peptidase M48 Ste24p protease loiP (formerly yggG)-like family are mostly uncharacterized proteins that include E. coli loiP and ycaLG, considered to be putative metallopeptidases, containing a zinc-binding motif, HEXXH, and a COOH-terminal ER retrieval signal (KKXX). They proteolytically remove the C-terminal three residues of farnesylated proteins. They are integral membrane proteins associated with the endoplasmic reticulum and golgi, binding one zinc ion per subunit. In eukaryotes, Ste24p is required for the first NH2-terminal proteolytic processing event within the a-factor precursor, which takes place after COOH-terminal CAAX modification (C is cysteine; A is usually aliphatic; X is one of several amino acids) is complete. Mutation studies have shown that the HEXXH protease motif, which is extracellular but adjacent to a transmembrane domain and therefore close to the membrane surface, is critical for Ste24p activity. LoiP has been shown to be a metallopeptidase that cleaves its targets preferentially between Phe-Phe residues. It is upregulated when bacteria are subjected to media of low osmolarity, thus yggG was named LoiP (low osmolarity induced protease). Proper membrane localization of LoiP may depend on YfgC, another putative metalloprotease in this subfamily.
Pssm-ID: 320693 [Multi-domain] Cd Length: 215 Bit Score: 63.76 E-value: 5.40e-12
Peptidases M48 (Ste24 endopeptidase or htpX homolog) and M56 (in MecR1 and BlaR1), integral ...
85-165
6.81e-10
Peptidases M48 (Ste24 endopeptidase or htpX homolog) and M56 (in MecR1 and BlaR1), integral membrane metallopeptidases; This family contains peptidase M48 (also known as Ste24 peptidase, Ste24p, Ste24 endopeptidase, a-factor converting enzyme, AFC1), M56 (also known as BlaR1 peptidase) as well as a novel family called minigluzincins. Peptidase M48 belongs to Ste24 endopeptidase family. Members of this family include Ste24 protease (peptidase M48A), protease htpX homolog (peptidase M48B), or CAAX prenyl protease 1, and mitochondrial metalloendopeptidase OMA1 (peptidase M48C). They proteolytically remove the C-terminal three residues of farnesylated proteins. They are integral membrane proteins associated with the endoplasmic reticulum and golgi, binding one zinc ion per subunit. In eukaryotes, Ste24p is required for the first NH2-terminal proteolytic processing event within the a-factor precursor, which takes place after COOH-terminal CAAX modification (C is cysteine; A is usually aliphatic; X is one of several amino acids) is complete. The Ste24p contains multiple membrane spans, a zinc metalloprotease motif (HEXXH), and a COOH-terminal ER retrieval signal (KKXX). Mutation studies have shown that the HEXXH protease motif, which is extracellular but adjacent to a transmembrane domain and therefore close to the membrane surface, is critical for Ste24p activity. Ste24p has limited homology to HtpX family of prokaryotic proteins; HtpX proteins, also part of the M48 peptidase family, are smaller and homology is restricted to the C-terminal half of Ste24p. HtpX expression is controlled by the Cpx stress response system, which senses abnormal membrane proteins; HtpX then undergoes self-degradation and collaborates with FtsH to eliminate these misfolded proteins. Peptidase M56 includes zinc metalloprotease domain in MecR1 and BlaR1. MecR1 is a transmembrane beta-lactam sensor/signal transducer protein that regulates the expression of an altered penicillin-binding protein PBP2a, which resists inactivation by beta-lactam antibiotics, in methicillin-resistant Staphylococcus aureus (MRSA). BlaR1 regulates the inducible expression of a class A beta-lactamase that hydrolytically destroys certain beta-lactam antibiotics in MRSA. Also included are a novel family of related proteins that consist of the soluble minimal scaffold similar to the catalytic domains of the integral-membrane metallopeptidase M48 and M56, thus called minigluzincins.
Pssm-ID: 320682 [Multi-domain] Cd Length: 94 Bit Score: 55.15 E-value: 6.81e-10
Peptidase M48 subfamily A-like, putative CaaX prenyl protease; This family contains peptidase ...
108-299
3.98e-08
Peptidase M48 subfamily A-like, putative CaaX prenyl protease; This family contains peptidase family M48 subfamily A-like CaaX prenyl protease 1, most of which are uncharacterized. Some of these contain tetratricopeptide (TPR) repeats at the C-terminus. Proteins in this family contain the zinc metalloprotease motif (HEXXH), likely exposed on the cytoplasmic side. They are thought to be possibly associated with the endoplasmic reticulum (ER), regardless of whether their genes possess the conventional signal motif (KKXX) in the C-terminal. These proteins putatively remove the C-terminal three residues of farnesylated proteins proteolytically.
Pssm-ID: 320704 [Multi-domain] Cd Length: 346 Bit Score: 53.82 E-value: 3.98e-08
Peptidase M56-like including those in BlaR1 and MecR1, integral membrane metallopeptidase; ...
98-252
7.89e-06
Peptidase M56-like including those in BlaR1 and MecR1, integral membrane metallopeptidase; This family contains peptidase M56, which includes zinc metalloprotease domain in MecR1 as well as BlaR1. MecR1 is a transmembrane beta-lactam sensor/signal transducer protein that regulates the expression of an altered penicillin-binding protein PBP2a, which resists inactivation by beta-lactam antibiotics, in methicillin-resistant Staphylococcus aureus (MRSA). BlaR1 regulates the inducible expression of a class A beta-lactamase that hydrolytically destroys certain ?-lactam antibiotics in MRSA. Both, MecR1 and BlaR1, are transmembrane proteins that consist of four transmembrane helices, a cytoplasmic zinc protease domain, and the soluble C-terminal extracellular sensor domain, and are highly similar in sequence and function. The signal for protein expression is transmitted by site-specific proteolytic cleavage of both the transducer, which auto-activates, and the repressor, which is inactivated, unblocking gene transcription. All members contain the zinc metalloprotease motif (HEXXH). Homologs of this peptidase domain are also found in a number of other bacterial genome sequences, most of which are as yet uncharacterized.
Pssm-ID: 320685 [Multi-domain] Cd Length: 165 Bit Score: 45.38 E-value: 7.89e-06
Peptidase M48C, integral membrane endopeptidase; This subfamily contains peptidase M48C Oma1 ...
99-147
1.05e-04
Peptidase M48C, integral membrane endopeptidase; This subfamily contains peptidase M48C Oma1 (also called mitochondrial metalloendopeptidase OMA1) protease homologs that are mostly uncharacterized. Oma1 is part of the quality control system in the inner membrane of mitochondria, with its catalytic site facing the matrix space. It cleaves and thereby promotes the turnover of mistranslated or misfolded membrane proteins. Oma1 can cleave the misfolded multi-pass membrane protein Oxa1, thus exerting a function similar to the ATP-dependent m-AAA protease for quality control of inner membrane proteins; it cleaves a misfolded polytopic membrane protein at multiple sites. It has been proposed that in the absence of m-AAA protease, proteolysis of Oxa1 is mediated by Oma1 in an ATP-independent manner. Oma1 is part of highly conserved mitochondrial metallopeptidases, with homologs present in higher eukaryotes, eubacteria and archaebacteria, all containing the zinc binding motif (HEXXH). It forms a high molecular mass complex in the inner membrane, possibly a homo-hexamer.
Pssm-ID: 320690 [Multi-domain] Cd Length: 187 Bit Score: 42.18 E-value: 1.05e-04
Peptidase M48 CaaX prenyl protease type 1, an integral membrane, Zn-dependent protein; This ...
109-298
1.21e-03
Peptidase M48 CaaX prenyl protease type 1, an integral membrane, Zn-dependent protein; This family of M48 CaaX prenyl protease 1-like family includes a number of well characterized genes such as those found in Taenia solium metacestode (TsSte24p), Arabidopsis (AtSte24), yeast Ste24p and human (Hs Ste24p) as well as several uncharacterized genes such as YhfN, some of which also containing tetratricopeptide (TPR) repeats. All members of this family contain the zinc metalloprotease motif (HEXXH), likely exposed on the cytoplasmic side. They are thought to be intimately associated with the endoplasmic reticulum (ER), regardless of whether their genes possess the conventional signal motif (KKXX) in the C-terminal. Proteins in this family proteolytically remove the C-terminal three residues of farnesylated proteins. The gene ZmpSte24, also known as FACE-1 in humans, a member of this family, is involved in the post-translational processing of prelamin A to mature lamin A, a major component of the nuclear envelope. ZmpSte24 deficiency causes an accumulation of prelamin A leading to lipodystrophy and other disease phenotypes while mutations in the protein lead to diseases of lamin processing (laminopathies), such as premature aging disease progeria and metabolic disorders. Some of these mutations map to the peptide-binding site.
Pssm-ID: 320689 [Multi-domain] Cd Length: 285 Bit Score: 39.73 E-value: 1.21e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options