condensation domain-containing protein, partial [Bacillus cereus group sp. BfR-BA-01355]
List of domain hits
Name | Accession | Description | Interval | E-value | ||
EntF super family | cl43309 | EntF, seryl-AMP synthase component of non-ribosomal peptide synthetase [Secondary metabolites ... |
1-74 | 5.77e-11 | ||
EntF, seryl-AMP synthase component of non-ribosomal peptide synthetase [Secondary metabolites biosynthesis, transport and catabolism]; The actual alignment was detected with superfamily member COG1020: Pssm-ID: 440643 [Multi-domain] Cd Length: 1329 Bit Score: 56.02 E-value: 5.77e-11
|
||||||
Name | Accession | Description | Interval | E-value | ||
EntF | COG1020 | EntF, seryl-AMP synthase component of non-ribosomal peptide synthetase [Secondary metabolites ... |
1-74 | 5.77e-11 | ||
EntF, seryl-AMP synthase component of non-ribosomal peptide synthetase [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440643 [Multi-domain] Cd Length: 1329 Bit Score: 56.02 E-value: 5.77e-11
|
||||||
LCL_NRPS-like | cd19531 | LCL-type Condensation (C) domain of non-ribosomal peptide synthetases(NRPSs) and similar ... |
2-41 | 1.02e-06 | ||
LCL-type Condensation (C) domain of non-ribosomal peptide synthetases(NRPSs) and similar domains including the C-domain of SgcC5, a free-standing NRPS with both ester- and amide- bond forming activity; LCL-type Condensation (C) domains catalyze peptide bond formation between two L-amino acids, ((L)C(L)). C-domains of NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). In addition to the LCL-type, there are various subtypes of C-domains such as the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. Streptomyces globisporus SgcC5 is a free-standing NRPS condensation enzyme (rather than a modular NRPS), which catalyzes the condensation between the SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and (R)-1phenyl-1,2-ethanediol, forming an ester bond, during the synthesis of the chromoprotein enediyne antitumor antibiotic C-1027. It has some acceptor substrate promiscuity as it has been shown to also catalyze the formation of an amide bond between SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and a mimic of the enediyne core acceptor substrate having an amine at its C-2 position. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. An HHxx[SAG]DGxSx(6)[ED] motif is characteristic of LCL-type C-domains. Pssm-ID: 380454 [Multi-domain] Cd Length: 427 Bit Score: 43.88 E-value: 1.02e-06
|
||||||
PRK12316 | PRK12316 | peptide synthase; Provisional |
1-74 | 2.45e-05 | ||
peptide synthase; Provisional Pssm-ID: 237054 [Multi-domain] Cd Length: 5163 Bit Score: 39.94 E-value: 2.45e-05
|
||||||
Condensation | pfam00668 | Condensation domain; This domain is found in many multi-domain enzymes which synthesize ... |
1-46 | 1.14e-04 | ||
Condensation domain; This domain is found in many multi-domain enzymes which synthesize peptide antibiotics. This domain catalyzes a condensation reaction to form peptide bonds in non- ribosomal peptide biosynthesis. It is usually found to the carboxy side of a phosphopantetheine binding domain (pfam00550). It has been shown that mutations in the HHXXXDG motif abolish activity suggesting this is part of the active site. Pssm-ID: 395541 [Multi-domain] Cd Length: 454 Bit Score: 38.08 E-value: 1.14e-04
|
||||||
Name | Accession | Description | Interval | E-value | ||
EntF | COG1020 | EntF, seryl-AMP synthase component of non-ribosomal peptide synthetase [Secondary metabolites ... |
1-74 | 5.77e-11 | ||
EntF, seryl-AMP synthase component of non-ribosomal peptide synthetase [Secondary metabolites biosynthesis, transport and catabolism]; Pssm-ID: 440643 [Multi-domain] Cd Length: 1329 Bit Score: 56.02 E-value: 5.77e-11
|
||||||
LCL_NRPS-like | cd19531 | LCL-type Condensation (C) domain of non-ribosomal peptide synthetases(NRPSs) and similar ... |
2-41 | 1.02e-06 | ||
LCL-type Condensation (C) domain of non-ribosomal peptide synthetases(NRPSs) and similar domains including the C-domain of SgcC5, a free-standing NRPS with both ester- and amide- bond forming activity; LCL-type Condensation (C) domains catalyze peptide bond formation between two L-amino acids, ((L)C(L)). C-domains of NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). In addition to the LCL-type, there are various subtypes of C-domains such as the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. Streptomyces globisporus SgcC5 is a free-standing NRPS condensation enzyme (rather than a modular NRPS), which catalyzes the condensation between the SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and (R)-1phenyl-1,2-ethanediol, forming an ester bond, during the synthesis of the chromoprotein enediyne antitumor antibiotic C-1027. It has some acceptor substrate promiscuity as it has been shown to also catalyze the formation of an amide bond between SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and a mimic of the enediyne core acceptor substrate having an amine at its C-2 position. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. An HHxx[SAG]DGxSx(6)[ED] motif is characteristic of LCL-type C-domains. Pssm-ID: 380454 [Multi-domain] Cd Length: 427 Bit Score: 43.88 E-value: 1.02e-06
|
||||||
PRK12316 | PRK12316 | peptide synthase; Provisional |
1-74 | 2.45e-05 | ||
peptide synthase; Provisional Pssm-ID: 237054 [Multi-domain] Cd Length: 5163 Bit Score: 39.94 E-value: 2.45e-05
|
||||||
Condensation | pfam00668 | Condensation domain; This domain is found in many multi-domain enzymes which synthesize ... |
1-46 | 1.14e-04 | ||
Condensation domain; This domain is found in many multi-domain enzymes which synthesize peptide antibiotics. This domain catalyzes a condensation reaction to form peptide bonds in non- ribosomal peptide biosynthesis. It is usually found to the carboxy side of a phosphopantetheine binding domain (pfam00550). It has been shown that mutations in the HHXXXDG motif abolish activity suggesting this is part of the active site. Pssm-ID: 395541 [Multi-domain] Cd Length: 454 Bit Score: 38.08 E-value: 1.14e-04
|
||||||
PRK12316 | PRK12316 | peptide synthase; Provisional |
1-71 | 1.30e-04 | ||
peptide synthase; Provisional Pssm-ID: 237054 [Multi-domain] Cd Length: 5163 Bit Score: 38.01 E-value: 1.30e-04
|
||||||
PRK12467 | PRK12467 | peptide synthase; Provisional |
1-71 | 1.96e-04 | ||
peptide synthase; Provisional Pssm-ID: 237108 [Multi-domain] Cd Length: 3956 Bit Score: 37.45 E-value: 1.96e-04
|
||||||
C_PKS-NRPS_PksJ-like | cd20484 | Condensation domain of hybrid polyketide synthetase/nonribosomal peptide synthetases (PKS ... |
1-41 | 3.46e-04 | ||
Condensation domain of hybrid polyketide synthetase/nonribosomal peptide synthetases (PKS/NRPSs), similar to Bacillus subtilis PksJ; Condensation (C) domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. Hybrid PKS/NRPS create polymers containing both polyketide and amide linkages. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. Members of this subfamily have the typical C-domain HHxxxD motif. PksJ is involved in some intermediate steps for the synthesis of the antibiotic polyketide bacillaene which is important in secondary metabolism. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. Pssm-ID: 380472 [Multi-domain] Cd Length: 430 Bit Score: 36.91 E-value: 3.46e-04
|
||||||
LCL_NRPS | cd19538 | LCL-type Condensation domain of non-ribosomal peptide synthetases (NRPSs) and similar domains; ... |
4-41 | 6.04e-04 | ||
LCL-type Condensation domain of non-ribosomal peptide synthetases (NRPSs) and similar domains; LCL-type Condensation (C) domains catalyze peptide bond formation between two L-amino acids, ((L)C(L)). C-domains of NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). In addition to the LCL-type, there are various subtypes of C-domains such as the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. An HHxx[SAG]DGxSx(6)[ED] motif is characteristic of LCL-type C-domains. Pssm-ID: 380461 [Multi-domain] Cd Length: 432 Bit Score: 36.09 E-value: 6.04e-04
|
||||||
PRK12467 | PRK12467 | peptide synthase; Provisional |
1-73 | 2.99e-03 | ||
peptide synthase; Provisional Pssm-ID: 237108 [Multi-domain] Cd Length: 3956 Bit Score: 34.37 E-value: 2.99e-03
|
||||||
Blast search parameters | ||||
|