VWA domain-containing protein [Pantoea sp. YR343]
vWA domain-containing protein( domain architecture ID 630)
vWA (von Willebrand factor type A) domain-containing protein may be involved in one of a wide variety of important cellular functions, including basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and immune defenses
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
vWFA super family | cl00057 | Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation ... |
35-206 | 9.91e-47 | ||||
Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. The actual alignment was detected with superfamily member cd01467: Pssm-ID: 469594 [Multi-domain] Cd Length: 180 Bit Score: 154.02 E-value: 9.91e-47
|
||||||||
Name | Accession | Description | Interval | E-value | |||||
vWA_BatA_type | cd01467 | VWA BatA type: Von Willebrand factor type A (vWA) domain was originally found in the blood ... |
35-206 | 9.91e-47 | |||||
VWA BatA type: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses. In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Members of this subgroup are bacterial in origin. They are typified by the presence of a MIDAS motif. Pssm-ID: 238744 [Multi-domain] Cd Length: 180 Bit Score: 154.02 E-value: 9.91e-47
|
|||||||||
ChlD | COG1240 | vWFA (von Willebrand factor type A) domain of Mg and Co chelatases [Coenzyme transport and ... |
3-220 | 1.16e-44 | |||||
vWFA (von Willebrand factor type A) domain of Mg and Co chelatases [Coenzyme transport and metabolism]; Pssm-ID: 440853 [Multi-domain] Cd Length: 262 Bit Score: 151.24 E-value: 1.16e-44
|
|||||||||
VWA | smart00327 | von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins ... |
36-200 | 5.22e-23 | |||||
von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins mediate adhesion via metal ion-dependent adhesion sites (MIDAS). Intracellular VWA domains and homologues in prokaryotes have recently been identified. The proposed VWA domains in integrin beta subunits have recently been substantiated using sequence-based methods. Pssm-ID: 214621 [Multi-domain] Cd Length: 175 Bit Score: 92.52 E-value: 5.22e-23
|
|||||||||
VWA | pfam00092 | von Willebrand factor type A domain; |
36-199 | 3.18e-20 | |||||
von Willebrand factor type A domain; Pssm-ID: 459670 [Multi-domain] Cd Length: 174 Bit Score: 85.02 E-value: 3.18e-20
|
|||||||||
PRK13685 | PRK13685 | hypothetical protein; Provisional |
3-222 | 4.83e-13 | |||||
hypothetical protein; Provisional Pssm-ID: 184242 [Multi-domain] Cd Length: 326 Bit Score: 67.80 E-value: 4.83e-13
|
|||||||||
acidobact_VWFA | TIGR03436 | VWFA-related Acidobacterial domain; Members of this family are bacterial domains that include ... |
35-222 | 3.98e-12 | |||||
VWFA-related Acidobacterial domain; Members of this family are bacterial domains that include a region related to the von Willebrand factor type A (VWFA) domain (pfam00092). These domains are restricted to, and have undergone a large paralogous family expansion in, the Acidobacteria, including Solibacter usitatus and Acidobacterium capsulatum ATCC 51196. Pssm-ID: 274577 [Multi-domain] Cd Length: 296 Bit Score: 64.64 E-value: 3.98e-12
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
vWA_BatA_type | cd01467 | VWA BatA type: Von Willebrand factor type A (vWA) domain was originally found in the blood ... |
35-206 | 9.91e-47 | |||||
VWA BatA type: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses. In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Members of this subgroup are bacterial in origin. They are typified by the presence of a MIDAS motif. Pssm-ID: 238744 [Multi-domain] Cd Length: 180 Bit Score: 154.02 E-value: 9.91e-47
|
|||||||||
ChlD | COG1240 | vWFA (von Willebrand factor type A) domain of Mg and Co chelatases [Coenzyme transport and ... |
3-220 | 1.16e-44 | |||||
vWFA (von Willebrand factor type A) domain of Mg and Co chelatases [Coenzyme transport and metabolism]; Pssm-ID: 440853 [Multi-domain] Cd Length: 262 Bit Score: 151.24 E-value: 1.16e-44
|
|||||||||
YfbK | COG2304 | Secreted protein containing bacterial Ig-like domain and vWFA domain [General function ... |
35-200 | 3.79e-28 | |||||
Secreted protein containing bacterial Ig-like domain and vWFA domain [General function prediction only]; Pssm-ID: 441879 [Multi-domain] Cd Length: 289 Bit Score: 108.65 E-value: 3.79e-28
|
|||||||||
vWFA | cd00198 | Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation ... |
35-202 | 9.25e-26 | |||||
Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Pssm-ID: 238119 [Multi-domain] Cd Length: 161 Bit Score: 99.18 E-value: 9.25e-26
|
|||||||||
VWA | smart00327 | von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins ... |
36-200 | 5.22e-23 | |||||
von Willebrand factor (vWF) type A domain; VWA domains in extracellular eukaryotic proteins mediate adhesion via metal ion-dependent adhesion sites (MIDAS). Intracellular VWA domains and homologues in prokaryotes have recently been identified. The proposed VWA domains in integrin beta subunits have recently been substantiated using sequence-based methods. Pssm-ID: 214621 [Multi-domain] Cd Length: 175 Bit Score: 92.52 E-value: 5.22e-23
|
|||||||||
VWA | pfam00092 | von Willebrand factor type A domain; |
36-199 | 3.18e-20 | |||||
von Willebrand factor type A domain; Pssm-ID: 459670 [Multi-domain] Cd Length: 174 Bit Score: 85.02 E-value: 3.18e-20
|
|||||||||
VWA_2 | pfam13519 | von Willebrand factor type A domain; |
37-131 | 2.86e-16 | |||||
von Willebrand factor type A domain; Pssm-ID: 463909 [Multi-domain] Cd Length: 103 Bit Score: 72.32 E-value: 2.86e-16
|
|||||||||
vWFA_subfamily_ECM | cd01450 | Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation ... |
36-201 | 3.68e-16 | |||||
Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains Pssm-ID: 238727 [Multi-domain] Cd Length: 161 Bit Score: 73.48 E-value: 3.68e-16
|
|||||||||
vWA_ywmD_type | cd01456 | VWA ywmD type:Von Willebrand factor type A (vWA) domain was originally found in the blood ... |
24-200 | 4.30e-15 | |||||
VWA ywmD type:Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Not much is known about the function of the members of this subgroup. All members of this subgroup however have a conserved MIDAS motif. Pssm-ID: 238733 [Multi-domain] Cd Length: 206 Bit Score: 71.69 E-value: 4.30e-15
|
|||||||||
vWA_C3HC4_type | cd01466 | VWA C3HC4-type: Von Willebrand factor type A (vWA) domain was originally found in the blood ... |
37-200 | 2.10e-14 | |||||
VWA C3HC4-type: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Membes of this subgroup belong to Zinc-finger family as they are found fused to RING finger domains. The MIDAS motif is not conserved in all the members of this family. The function of vWA domains however is not known. Pssm-ID: 238743 [Multi-domain] Cd Length: 155 Bit Score: 68.96 E-value: 2.10e-14
|
|||||||||
vWA_subgroup | cd01465 | VWA subgroup: Von Willebrand factor type A (vWA) domain was originally found in the blood ... |
36-202 | 2.50e-14 | |||||
VWA subgroup: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Not much is known about the function of the VWA domain in these proteins. The members do have a conserved MIDAS motif. The biochemical function however is not known. Pssm-ID: 238742 [Multi-domain] Cd Length: 170 Bit Score: 68.84 E-value: 2.50e-14
|
|||||||||
ViaA | COG2425 | Uncharacterized conserved protein, contains a von Willebrand factor type A (vWA) domain ... |
10-182 | 1.10e-13 | |||||
Uncharacterized conserved protein, contains a von Willebrand factor type A (vWA) domain [Function unknown]; Pssm-ID: 441973 [Multi-domain] Cd Length: 263 Bit Score: 68.94 E-value: 1.10e-13
|
|||||||||
PRK13685 | PRK13685 | hypothetical protein; Provisional |
3-222 | 4.83e-13 | |||||
hypothetical protein; Provisional Pssm-ID: 184242 [Multi-domain] Cd Length: 326 Bit Score: 67.80 E-value: 4.83e-13
|
|||||||||
acidobact_VWFA | TIGR03436 | VWFA-related Acidobacterial domain; Members of this family are bacterial domains that include ... |
35-222 | 3.98e-12 | |||||
VWFA-related Acidobacterial domain; Members of this family are bacterial domains that include a region related to the von Willebrand factor type A (VWFA) domain (pfam00092). These domains are restricted to, and have undergone a large paralogous family expansion in, the Acidobacteria, including Solibacter usitatus and Acidobacterium capsulatum ATCC 51196. Pssm-ID: 274577 [Multi-domain] Cd Length: 296 Bit Score: 64.64 E-value: 3.98e-12
|
|||||||||
TerY | COG4245 | Uncharacterized conserved protein YegL, contains vWA domain of TerY type [Function unknown]; |
33-178 | 1.99e-11 | |||||
Uncharacterized conserved protein YegL, contains vWA domain of TerY type [Function unknown]; Pssm-ID: 443387 [Multi-domain] Cd Length: 196 Bit Score: 61.48 E-value: 1.99e-11
|
|||||||||
hCaCC | TIGR00868 | calcium-activated chloride channel protein 1; found a row in 1A13.INFO that was not parsed out ... |
26-210 | 2.44e-09 | |||||
calcium-activated chloride channel protein 1; found a row in 1A13.INFO that was not parsed out AC found a row in 1A13.INFO that was not parsed out EC found a row in 1A13.INFO that was not parsed out GA found a row in 1A13.INFO that was not parsed out SO found a row in 1A13.INFO that was not parsed out RH found a row in 1A13.INFO that was not parsed out EN found a row in 1A13.INFO that was not parsed out GS found a row in 1A13.INFO that was not parsed out AL found a row in 1A13.INFO that was not parsed out The Epithelial Chloride Channel (E-ClC) Family (TC 1.A.13) found a row in 1A13.INFO that was not parsed out found a row in 1A13.INFO that was not parsed out Mammals have multiple isoforms of epithelial chloride channel proteins. The first member of this family to be characterized was a respiratory epithelium, Ca found a row in 1A13.INFO that was not parsed out 2+-regulated, chloride channel protein isolated from bovine tracheal apical membranes. It was biochemically characterized as a 140 kDa complex. The purified found a row in 1A13.INFO that was not parsed out complex when reconstituted in a planar lipid bilayer behaved as an anion-selective channel. It was regulated by Ca 2+ via a calmodulin kinase II-dependent found a row in 1A13.INFO that was not parsed out mechanism. When the cRNA was injected into Xenopus oocytes, an outward rectifying, DIDS-sensitive, anion conductance was measured. A related gene, found a row in 1A13.INFO that was not parsed out Lu-ECAM, was cloned from the bovine aortic endothelial cell line, BAEC. It is expressed in the lung and spleen but not in the trachea. Homologues are found in found a row in 1A13.INFO that was not parsed out several mammals, and at least three paralogues(hCaCC-1-3) are present in humans, each with different tissue distributions. found a row in 1A13.INFO that was not parsed out [Transport and binding proteins, Anions] Pssm-ID: 129946 [Multi-domain] Cd Length: 863 Bit Score: 57.59 E-value: 2.44e-09
|
|||||||||
vWA_interalpha_trypsin_inhibitor | cd01461 | vWA_interalpha trypsin inhibitor (ITI): ITI is a glycoprotein composed of three polypeptides- ... |
35-202 | 2.76e-08 | |||||
vWA_interalpha trypsin inhibitor (ITI): ITI is a glycoprotein composed of three polypeptides- two heavy chains and one light chain (bikunin). Bikunin confers the protease-inhibitor function while the heavy chains are involved in rendering stability to the extracellular matrix by binding to hyaluronic acid. The heavy chains carry the VWA domain with a conserved MIDAS motif. Although the exact role of the VWA domains remains unknown, it has been speculated to be involved in mediating protein-protein interactions with the components of the extracellular matrix. Pssm-ID: 238738 [Multi-domain] Cd Length: 171 Bit Score: 52.22 E-value: 2.76e-08
|
|||||||||
VWA_integrin_invertebrates | cd01476 | VWA_integrin (invertebrates): Integrins are a family of cell surface receptors that have ... |
36-195 | 3.06e-07 | |||||
VWA_integrin (invertebrates): Integrins are a family of cell surface receptors that have diverse functions in cell-cell and cell-extracellular matrix interactions. Because of their involvement in many biologically important adhesion processes, integrins are conserved across a wide range of multicellular animals. Integrins from invertebrates have been identified from six phyla. There are no data to date to suggest any immunological functions for the invertebrate integrins. The members of this sub-group have the conserved MIDAS motif that is charateristic of this domain suggesting the involvement of the integrins in the recognition and binding of multi-ligands. Pssm-ID: 238753 [Multi-domain] Cd Length: 163 Bit Score: 48.93 E-value: 3.06e-07
|
|||||||||
vWA_ATR | cd01474 | ATR (Anthrax Toxin Receptor): Anthrax toxin is a key virulence factor for Bacillus anthracis, ... |
36-182 | 1.20e-05 | |||||
ATR (Anthrax Toxin Receptor): Anthrax toxin is a key virulence factor for Bacillus anthracis, the causative agent of anthrax. ATR is the cellular receptor for the anthrax protective antigen and facilitates entry of the toxin into cells. The VWA domain in ATR contains the toxin binding site and mediates interaction with protective antigen. The binding is mediated by divalent cations that binds to the MIDAS motif. These proteins are a family of vertebrate ECM receptors expressed by endothelial cells. Pssm-ID: 238751 [Multi-domain] Cd Length: 185 Bit Score: 44.81 E-value: 1.20e-05
|
|||||||||
vWA_CTRP | cd01473 | CTRP for CS protein-TRAP-related protein: Adhesion of Plasmodium to host cells is an ... |
37-153 | 1.50e-05 | |||||
CTRP for CS protein-TRAP-related protein: Adhesion of Plasmodium to host cells is an important phenomenon in parasite invasion and in malaria associated pathology.CTRP encodes a protein containing a putative signal sequence followed by a long extracellular region of 1990 amino acids, a transmembrane domain, and a short cytoplasmic segment. The extracellular region of CTRP contains two separated adhesive domains. The first domain contains six 210-amino acid-long homologous VWA domain repeats. The second domain contains seven repeats of 87-60 amino acids in length, which share similarities with the thrombospondin type 1 domain found in a variety of adhesive molecules. Finally, CTRP also contains consensus motifs found in the superfamily of haematopoietin receptors. The VWA domains in these proteins likely mediate protein-protein interactions. Pssm-ID: 238750 [Multi-domain] Cd Length: 192 Bit Score: 44.62 E-value: 1.50e-05
|
|||||||||
YeaD2 | COG1721 | Uncharacterized conserved protein, DUF58 family, contains vWF domain [Function unknown]; |
35-152 | 1.14e-04 | |||||
Uncharacterized conserved protein, DUF58 family, contains vWF domain [Function unknown]; Pssm-ID: 441327 [Multi-domain] Cd Length: 287 Bit Score: 42.50 E-value: 1.14e-04
|
|||||||||
VWA_YIEM_type | cd01462 | VWA YIEM type: Von Willebrand factor type A (vWA) domain was originally found in the blood ... |
37-186 | 1.38e-04 | |||||
VWA YIEM type: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Members of this subgroup have a conserved MIDAS motif, however, their biochemical function is not well characterised. Pssm-ID: 238739 [Multi-domain] Cd Length: 152 Bit Score: 41.18 E-value: 1.38e-04
|
|||||||||
vWA_subfamily | cd01464 | VWA subfamily: Von Willebrand factor type A (vWA) domain was originally found in the blood ... |
37-150 | 1.54e-04 | |||||
VWA subfamily: Von Willebrand factor type A (vWA) domain was originally found in the blood coagulation protein von Willebrand factor (vWF). Typically, the vWA domain is made up of approximately 200 amino acid residues folded into a classic a/b para-rossmann type of fold. The vWA domain, since its discovery, has drawn great interest because of its widespread occurrence and its involvement in a wide variety of important cellular functions. These include basal membrane formation, cell migration, cell differentiation, adhesion, haemostasis, signaling, chromosomal stability, malignant transformation and in immune defenses In integrins these domains form heterodimers while in vWF it forms multimers. There are different interaction surfaces of this domain as seen by the various molecules it complexes with. Ligand binding in most cases is mediated by the presence of a metal ion dependent adhesion site termed as the MIDAS motif that is a characteristic feature of most, if not all A domains. Members of this subgroup have no assigned function. This subfamily is typified by the presence of a conserved MIDAS motif. Pssm-ID: 238741 [Multi-domain] Cd Length: 176 Bit Score: 41.56 E-value: 1.54e-04
|
|||||||||
vWA_collagen | cd01472 | von Willebrand factor (vWF) type A domain; equivalent to the I-domain of integrins. This ... |
35-182 | 3.59e-04 | |||||
von Willebrand factor (vWF) type A domain; equivalent to the I-domain of integrins. This domain has a variety of functions including: intermolecular adhesion, cell migration, signalling, transcription, and DNA repair. In integrins these domains form heterodimers while in vWF it forms homodimers and multimers. There are different interaction surfaces of this domain as seen by its complexes with collagen with either integrin or human vWFA. In integrins collagen binding occurs via the metal ion-dependent adhesion site (MIDAS) and involves three surface loops located on the upper surface of the molecule. In human vWFA, collagen binding is thought to occur on the bottom of the molecule and does not involve the vestigial MIDAS motif. Pssm-ID: 238749 [Multi-domain] Cd Length: 164 Bit Score: 40.29 E-value: 3.59e-04
|
|||||||||
vWA_Magnesium_chelatase | cd01451 | Magnesium chelatase: Mg-chelatase catalyses the insertion of Mg into protoporphyrin IX (Proto). ... |
37-201 | 1.50e-03 | |||||
Magnesium chelatase: Mg-chelatase catalyses the insertion of Mg into protoporphyrin IX (Proto). In chlorophyll biosynthesis, insertion of Mg2+ into protoporphyrin IX is catalysed by magnesium chelatase in an ATP-dependent reaction. Magnesium chelatase is a three sub-unit (BchI, BchD and BchH) enzyme with a novel arrangement of domains: the C-terminal helical domain is located behind the nucleotide binding site. The BchD domain contains a AAA domain at its N-terminus and a VWA domain at its C-terminus. The VWA domain has been speculated to be involved in mediating protein-protein interactions. Pssm-ID: 238728 [Multi-domain] Cd Length: 178 Bit Score: 38.41 E-value: 1.50e-03
|
|||||||||
VWA_3 | pfam13768 | von Willebrand factor type A domain; |
36-200 | 2.11e-03 | |||||
von Willebrand factor type A domain; Pssm-ID: 372716 [Multi-domain] Cd Length: 155 Bit Score: 37.76 E-value: 2.11e-03
|
|||||||||
vWA_ku | cd01458 | Ku70/Ku80 N-terminal domain. The Ku78 heterodimer (composed of Ku70 and Ku80) contributes to ... |
34-149 | 2.84e-03 | |||||
Ku70/Ku80 N-terminal domain. The Ku78 heterodimer (composed of Ku70 and Ku80) contributes to genomic integrity through its ability to bind DNA double-strand breaks (DSB) in a preferred orientation. DSB's are repaired by either homologues recombination or non-homologues end joining and facilitate repair by the non-homologous end-joining pathway (NHEJ). The Ku heterodimer is required for accurate process that tends to preserve the sequence at the junction. Ku78 is found in all three kingdoms of life. However, only the eukaryotic proteins have a vWA domain fused to them at their N-termini. The vWA domain is not involved in DNA binding but may very likey mediate Ku78's interactions with other proteins. Members of this subgroup lack the conserved MIDAS motif. Pssm-ID: 238735 Cd Length: 218 Bit Score: 38.11 E-value: 2.84e-03
|
|||||||||
vWA_collagen_alpha_1-VI-type | cd01480 | VWA_collagen alpha(VI) type: The extracellular matrix represents a complex alloy of variable ... |
36-180 | 3.55e-03 | |||||
VWA_collagen alpha(VI) type: The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified thus far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. Some collagens have about 15-18 vWA domains in them. The VWA domains present in these collagens mediate protein-protein interactions. Pssm-ID: 238757 [Multi-domain] Cd Length: 186 Bit Score: 37.36 E-value: 3.55e-03
|
|||||||||
vWA_VGCC_like | cd01463 | VWA Voltage gated Calcium channel like: Voltage-gated calcium channels are a complex of five ... |
35-153 | 5.57e-03 | |||||
VWA Voltage gated Calcium channel like: Voltage-gated calcium channels are a complex of five proteins: alpha 1, beta 1, gamma, alpha 2 and delta. The alpha 2 and delta subunits result from proteolytic processing of a single gene product and carries at its N-terminus the VWA and cache domains, The alpha 2 delta gene family has orthologues in D. melanogaster and C. elegans but none have been detected in aither A. thaliana or yeast. The exact biochemical function of the VWA domain is not known but the alpha 2 delta complex has been shown to regulate various functional properties of the channel complex. Pssm-ID: 238740 [Multi-domain] Cd Length: 190 Bit Score: 36.99 E-value: 5.57e-03
|
|||||||||
Blast search parameters | ||||
|