UDP-2-acetamido-2,6-beta-L-arabino-hexul-4-ose reductase [Polaromonas sp. UBA4122]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||
NADB_Rossmann super family | cl21454 | Rossmann-fold NAD(P)(+)-binding proteins; A large family of proteins that share a ... |
2-198 | 3.76e-88 | ||||
Rossmann-fold NAD(P)(+)-binding proteins; A large family of proteins that share a Rossmann-fold NAD(P)H/NAD(P)(+) binding (NADB) domain. The NADB domain is found in numerous dehydrogenases of metabolic pathways such as glycolysis, and many other redox enzymes. NAD binding involves numerous hydrogen-bonds and van der Waals contacts, in particular H-bonding of residues in a turn between the first strand and the subsequent helix of the Rossmann-fold topology. Characteristically, this turn exhibits a consensus binding pattern similar to GXGXXG, in which the first 2 glycines participate in NAD(P)-binding, and the third facilitates close packing of the helix to the beta-strand. Typically, proteins in this family contain a second domain in addition to the NADB domain, which is responsible for specifically binding a substrate and catalyzing a particular enzymatic reaction. The actual alignment was detected with superfamily member cd05261: Pssm-ID: 473865 [Multi-domain] Cd Length: 248 Bit Score: 264.22 E-value: 3.76e-88
|
||||||||
cupin_CapF-like_C | cd07007 | Staphylococcus aureus CapF and related proteins, C-terminal cupin domain; This family contains ... |
209-317 | 1.25e-75 | ||||
Staphylococcus aureus CapF and related proteins, C-terminal cupin domain; This family contains cupin domains of proteins homologous to Staphylococcus aureus CapF (also known as WbjC in Pseudomonas aeruginosa and FnlB in Escherichia coli). CapF is a bifunctional metalloenzyme produced by certain pathogenic bacteria and is essential in the biosynthetic path of capsular polysaccharide (CP), a mucous layer on the surface of bacterium that facilitates immune evasion and infection. Thus, CapF is an antibacterial/therapeutic target. In S. aureus, enzymes CapE, CapF and CapG catalyze the sequential transformation of UDP-D-GlcNAc in the CP precursor UDP-L-FucNAc via the intermediate compound UDP-N-acetyl-L-talosamine (UDP-L-TalNAc). CapF consists of two domains; the C-terminal cupin domain catalyzes the epimerization of the compound produced by the upstream enzyme CapE, and the N-terminal short-chain dehydrogenase/reductase (SDR) domain catalyzes the reduction of the compound afforded by the cupin domain, requiring one equivalent of NADPH. The cupin domain is crucial for catalyzing the first chemical reaction, and also important for the stability of the enzyme. Similarly, in P. aeruginosa, WbjC, WbjB and WbjD enzymes synthesize UDP-N-acetyl-L-fucosamine, a precursor of the lipopolysacharide component L-fucosamine. The cupin domains contain a conserved "jelly roll-like" beta-barrel fold. : Pssm-ID: 380410 [Multi-domain] Cd Length: 109 Bit Score: 227.04 E-value: 1.25e-75
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
CAPF_like_SDR_e | cd05261 | capsular polysaccharide assembling protein (CAPF) like, extended (e) SDRs; This subgroup of ... |
2-198 | 3.76e-88 | ||||
capsular polysaccharide assembling protein (CAPF) like, extended (e) SDRs; This subgroup of extended SDRs, includes some members which have been identified as capsular polysaccharide assembling proteins, such as Staphylococcus aureus Cap5F which is involved in the biosynthesis of N-acetyl-l-fucosamine, a constituent of surface polysaccharide structures of S. aureus. This subgroup has the characteristic active site tetrad and NAD-binding motif of extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187571 [Multi-domain] Cd Length: 248 Bit Score: 264.22 E-value: 3.76e-88
|
||||||||
cupin_CapF-like_C | cd07007 | Staphylococcus aureus CapF and related proteins, C-terminal cupin domain; This family contains ... |
209-317 | 1.25e-75 | ||||
Staphylococcus aureus CapF and related proteins, C-terminal cupin domain; This family contains cupin domains of proteins homologous to Staphylococcus aureus CapF (also known as WbjC in Pseudomonas aeruginosa and FnlB in Escherichia coli). CapF is a bifunctional metalloenzyme produced by certain pathogenic bacteria and is essential in the biosynthetic path of capsular polysaccharide (CP), a mucous layer on the surface of bacterium that facilitates immune evasion and infection. Thus, CapF is an antibacterial/therapeutic target. In S. aureus, enzymes CapE, CapF and CapG catalyze the sequential transformation of UDP-D-GlcNAc in the CP precursor UDP-L-FucNAc via the intermediate compound UDP-N-acetyl-L-talosamine (UDP-L-TalNAc). CapF consists of two domains; the C-terminal cupin domain catalyzes the epimerization of the compound produced by the upstream enzyme CapE, and the N-terminal short-chain dehydrogenase/reductase (SDR) domain catalyzes the reduction of the compound afforded by the cupin domain, requiring one equivalent of NADPH. The cupin domain is crucial for catalyzing the first chemical reaction, and also important for the stability of the enzyme. Similarly, in P. aeruginosa, WbjC, WbjB and WbjD enzymes synthesize UDP-N-acetyl-L-fucosamine, a precursor of the lipopolysacharide component L-fucosamine. The cupin domains contain a conserved "jelly roll-like" beta-barrel fold. Pssm-ID: 380410 [Multi-domain] Cd Length: 109 Bit Score: 227.04 E-value: 1.25e-75
|
||||||||
WcaG | COG0451 | Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; |
23-120 | 1.10e-13 | ||||
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440220 [Multi-domain] Cd Length: 295 Bit Score: 70.01 E-value: 1.10e-13
|
||||||||
OxdD | COG2140 | Oxalate decarboxylase/archaeal phosphoglucose isomerase, cupin superfamily [Carbohydrate ... |
230-316 | 6.15e-05 | ||||
Oxalate decarboxylase/archaeal phosphoglucose isomerase, cupin superfamily [Carbohydrate transport and metabolism]; Oxalate decarboxylase/archaeal phosphoglucose isomerase, cupin superfamily is part of the Pathway/BioSystem: Glycolysis Pssm-ID: 441743 [Multi-domain] Cd Length: 115 Bit Score: 41.88 E-value: 6.15e-05
|
||||||||
Epimerase | pfam01370 | NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. ... |
36-112 | 1.31e-04 | ||||
NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. The proteins in this family use nucleotide-sugar substrates for a variety of chemical reactions. Pssm-ID: 396097 [Multi-domain] Cd Length: 238 Bit Score: 42.67 E-value: 1.31e-04
|
||||||||
Name | Accession | Description | Interval | E-value | ||||
CAPF_like_SDR_e | cd05261 | capsular polysaccharide assembling protein (CAPF) like, extended (e) SDRs; This subgroup of ... |
2-198 | 3.76e-88 | ||||
capsular polysaccharide assembling protein (CAPF) like, extended (e) SDRs; This subgroup of extended SDRs, includes some members which have been identified as capsular polysaccharide assembling proteins, such as Staphylococcus aureus Cap5F which is involved in the biosynthesis of N-acetyl-l-fucosamine, a constituent of surface polysaccharide structures of S. aureus. This subgroup has the characteristic active site tetrad and NAD-binding motif of extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187571 [Multi-domain] Cd Length: 248 Bit Score: 264.22 E-value: 3.76e-88
|
||||||||
cupin_CapF-like_C | cd07007 | Staphylococcus aureus CapF and related proteins, C-terminal cupin domain; This family contains ... |
209-317 | 1.25e-75 | ||||
Staphylococcus aureus CapF and related proteins, C-terminal cupin domain; This family contains cupin domains of proteins homologous to Staphylococcus aureus CapF (also known as WbjC in Pseudomonas aeruginosa and FnlB in Escherichia coli). CapF is a bifunctional metalloenzyme produced by certain pathogenic bacteria and is essential in the biosynthetic path of capsular polysaccharide (CP), a mucous layer on the surface of bacterium that facilitates immune evasion and infection. Thus, CapF is an antibacterial/therapeutic target. In S. aureus, enzymes CapE, CapF and CapG catalyze the sequential transformation of UDP-D-GlcNAc in the CP precursor UDP-L-FucNAc via the intermediate compound UDP-N-acetyl-L-talosamine (UDP-L-TalNAc). CapF consists of two domains; the C-terminal cupin domain catalyzes the epimerization of the compound produced by the upstream enzyme CapE, and the N-terminal short-chain dehydrogenase/reductase (SDR) domain catalyzes the reduction of the compound afforded by the cupin domain, requiring one equivalent of NADPH. The cupin domain is crucial for catalyzing the first chemical reaction, and also important for the stability of the enzyme. Similarly, in P. aeruginosa, WbjC, WbjB and WbjD enzymes synthesize UDP-N-acetyl-L-fucosamine, a precursor of the lipopolysacharide component L-fucosamine. The cupin domains contain a conserved "jelly roll-like" beta-barrel fold. Pssm-ID: 380410 [Multi-domain] Cd Length: 109 Bit Score: 227.04 E-value: 1.25e-75
|
||||||||
WcaG | COG0451 | Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; |
23-120 | 1.10e-13 | ||||
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis]; Pssm-ID: 440220 [Multi-domain] Cd Length: 295 Bit Score: 70.01 E-value: 1.10e-13
|
||||||||
SDR_e | cd08946 | extended (e) SDRs; Extended SDRs are distinct from classical SDRs. In addition to the Rossmann ... |
36-120 | 2.58e-13 | ||||
extended (e) SDRs; Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 212494 [Multi-domain] Cd Length: 200 Bit Score: 67.71 E-value: 2.58e-13
|
||||||||
UDP_G4E_4_SDR_e | cd05232 | UDP-glucose 4 epimerase, subgroup 4, extended (e) SDRs; UDP-glucose 4 epimerase (aka ... |
37-111 | 1.75e-08 | ||||
UDP-glucose 4 epimerase, subgroup 4, extended (e) SDRs; UDP-glucose 4 epimerase (aka UDP-galactose-4-epimerase), is a homodimeric extended SDR. It catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. This subgroup is comprised of bacterial proteins, and includes the Staphylococcus aureus capsular polysaccharide Cap5N, which may have a role in the synthesis of UDP-N-acetyl-d-fucosamine. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187543 [Multi-domain] Cd Length: 303 Bit Score: 54.66 E-value: 1.75e-08
|
||||||||
SDR_a1 | cd05265 | atypical (a) SDRs, subgroup 1; Atypical SDRs in this subgroup are poorly defined and have been ... |
21-123 | 3.32e-08 | ||||
atypical (a) SDRs, subgroup 1; Atypical SDRs in this subgroup are poorly defined and have been identified putatively as isoflavones reductase, sugar dehydratase, mRNA binding protein etc. Atypical SDRs are distinct from classical SDRs. Members of this subgroup retain the canonical active site triad (though not the upstream Asn found in most SDRs) but have an unusual putative glycine-rich NAD(P)-binding motif, GGXXXXG, in the usual location. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Atypical SDRs include biliverdin IX beta reductase (BVR-B,aka flavin reductase), NMRa (a negative transcriptional regulator of various fungi), progesterone 5-beta-reductase like proteins, phenylcoumaran benzylic ether and pinoresinol-lariciresinol reductases, phenylpropene synthases, eugenol synthase, triphenylmethane reductase, isoflavone reductases, and others. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. In addition to the Rossmann fold core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids, and typically have a TGXXGXXG cofactor binding motif. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187575 [Multi-domain] Cd Length: 250 Bit Score: 53.45 E-value: 3.32e-08
|
||||||||
UGD_SDR_e | cd05230 | UDP-glucuronate decarboxylase (UGD) and related proteins, extended (e) SDRs; UGD catalyzes the ... |
38-169 | 6.93e-06 | ||||
UDP-glucuronate decarboxylase (UGD) and related proteins, extended (e) SDRs; UGD catalyzes the formation of UDP-xylose from UDP-glucuronate; it is an extended-SDR, and has the characteristic glycine-rich NAD-binding pattern, TGXXGXXG, and active site tetrad. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187541 [Multi-domain] Cd Length: 305 Bit Score: 46.86 E-value: 6.93e-06
|
||||||||
OxdD | COG2140 | Oxalate decarboxylase/archaeal phosphoglucose isomerase, cupin superfamily [Carbohydrate ... |
230-316 | 6.15e-05 | ||||
Oxalate decarboxylase/archaeal phosphoglucose isomerase, cupin superfamily [Carbohydrate transport and metabolism]; Oxalate decarboxylase/archaeal phosphoglucose isomerase, cupin superfamily is part of the Pathway/BioSystem: Glycolysis Pssm-ID: 441743 [Multi-domain] Cd Length: 115 Bit Score: 41.88 E-value: 6.15e-05
|
||||||||
Epimerase | pfam01370 | NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. ... |
36-112 | 1.31e-04 | ||||
NAD dependent epimerase/dehydratase family; This family of proteins utilize NAD as a cofactor. The proteins in this family use nucleotide-sugar substrates for a variety of chemical reactions. Pssm-ID: 396097 [Multi-domain] Cd Length: 238 Bit Score: 42.67 E-value: 1.31e-04
|
||||||||
ManC | COG0662 | Mannose-6-phosphate isomerase, cupin superfamily [Carbohydrate transport and metabolism]; |
206-300 | 1.14e-03 | ||||
Mannose-6-phosphate isomerase, cupin superfamily [Carbohydrate transport and metabolism]; Pssm-ID: 440426 [Multi-domain] Cd Length: 114 Bit Score: 38.20 E-value: 1.14e-03
|
||||||||
NAD_binding_4 | pfam07993 | Male sterility protein; This family represents the C-terminal region of the male sterility ... |
33-112 | 1.34e-03 | ||||
Male sterility protein; This family represents the C-terminal region of the male sterility protein in a number of arabidopsis and drosophila. A sequence-related jojoba acyl CoA reductase is also included. Pssm-ID: 462334 [Multi-domain] Cd Length: 257 Bit Score: 39.51 E-value: 1.34e-03
|
||||||||
YbjT | COG0702 | Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General ... |
10-124 | 2.27e-03 | ||||
Uncharacterized conserved protein YbjT, contains NAD(P)-binding and DUF2867 domains [General function prediction only]; Pssm-ID: 440466 [Multi-domain] Cd Length: 215 Bit Score: 38.67 E-value: 2.27e-03
|
||||||||
cupin_RmlC-like | cd02208 | RmlC-like cupin superfamily; This superfamily contains proteins similar to the RmlC (dTDP ... |
224-299 | 2.71e-03 | ||||
RmlC-like cupin superfamily; This superfamily contains proteins similar to the RmlC (dTDP (deoxythymidine diphosphates)-4-dehydrorhamnose 3,5-epimerase)-like cupins. RmlC is a dTDP-sugar isomerase involved in the synthesis of L-rhamnose, a saccharide required for the virulence of some pathogenic bacteria. Cupins are a functionally diverse superfamily originally discovered based on the highly conserved motif found in germin and germin-like proteins. This conserved motif forms a beta-barrel fold found in all of the cupins, giving rise to the name cupin ('cupa' is the Latin term for small barrel). The active site of members of this superfamily is generally located at the center of a conserved barrel and usually includes a metal ion. The different functional classes in this superfamily include single domain bacterial isomerases and epimerases involved in the modification of cell wall carbohydrates, two domain bicupins such as the desiccation-tolerant seed storage globulins, and multidomain nuclear transcription factors involved in legume root nodulation. Pssm-ID: 380338 [Multi-domain] Cd Length: 73 Bit Score: 35.92 E-value: 2.71e-03
|
||||||||
SDR_e1 | cd05235 | extended (e) SDRs, subgroup 1; This family consists of an SDR module of multidomain proteins ... |
9-70 | 3.71e-03 | ||||
extended (e) SDRs, subgroup 1; This family consists of an SDR module of multidomain proteins identified as putative polyketide sythases fatty acid synthases (FAS), and nonribosomal peptide synthases, among others. However, unlike the usual ketoreductase modules of FAS and polyketide synthase, these domains are related to the extended SDRs, and have canonical NAD(P)-binding motifs and an active site tetrad. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif. Pssm-ID: 187546 [Multi-domain] Cd Length: 290 Bit Score: 38.40 E-value: 3.71e-03
|
||||||||
Lys2b | COG3320 | Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary ... |
11-70 | 6.08e-03 | ||||
Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs [Secondary metabolites biosynthesis, transport and catabolism]; Thioester reductase domain of alpha aminoadipate reductase Lys2 and NRPSs is part of the Pathway/BioSystem: Lysine biosynthesis Pssm-ID: 442549 [Multi-domain] Cd Length: 265 Bit Score: 37.49 E-value: 6.08e-03
|
||||||||
Blast search parameters | ||||
|