GTPase Era [Acidocella sp.]
GTPase Era( domain architecture ID 11439328)
GTPase Era is an essential protein that binds the 16S rRNA of the 30S subunit, couples cell growth with cytokinesis, and plays a role in cell division and energy metabolism
List of domain hits
Name | Accession | Description | Interval | E-value | |||||
Era | COG1159 | GTPase Era, involved in 16S rRNA processing [Translation, ribosomal structure and biogenesis]; |
3-293 | 2.84e-156 | |||||
GTPase Era, involved in 16S rRNA processing [Translation, ribosomal structure and biogenesis]; : Pssm-ID: 440773 [Multi-domain] Cd Length: 290 Bit Score: 437.50 E-value: 2.84e-156
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
Era | COG1159 | GTPase Era, involved in 16S rRNA processing [Translation, ribosomal structure and biogenesis]; |
3-293 | 2.84e-156 | |||||
GTPase Era, involved in 16S rRNA processing [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440773 [Multi-domain] Cd Length: 290 Bit Score: 437.50 E-value: 2.84e-156
|
|||||||||
era | PRK00089 | GTPase Era; Reviewed |
1-293 | 7.20e-152 | |||||
GTPase Era; Reviewed Pssm-ID: 234624 [Multi-domain] Cd Length: 292 Bit Score: 426.39 E-value: 7.20e-152
|
|||||||||
era | TIGR00436 | GTP-binding protein Era; Era is an essential GTPase in Escherichia coli and many other ... |
6-275 | 4.43e-86 | |||||
GTP-binding protein Era; Era is an essential GTPase in Escherichia coli and many other bacteria. It plays a role in ribosome biogenesis. Few bacteria lack this protein. [Protein synthesis, Other] Pssm-ID: 129528 [Multi-domain] Cd Length: 270 Bit Score: 258.86 E-value: 4.43e-86
|
|||||||||
Era | cd04163 | E. coli Ras-like protein (Era) is a multifunctional GTPase; Era (E. coli Ras-like protein) is ... |
3-170 | 6.51e-78 | |||||
E. coli Ras-like protein (Era) is a multifunctional GTPase; Era (E. coli Ras-like protein) is a multifunctional GTPase found in all bacteria except some eubacteria. It binds to the 16S ribosomal RNA (rRNA) of the 30S subunit and appears to play a role in the assembly of the 30S subunit, possibly by chaperoning the 16S rRNA. It also contacts several assembly elements of the 30S subunit. Era couples cell growth with cytokinesis and plays a role in cell division and energy metabolism. Homologs have also been found in eukaryotes. Era contains two domains: the N-terminal GTPase domain and a C-terminal domain KH domain that is critical for RNA binding. Both domains are important for Era function. Era is functionally able to compensate for deletion of RbfA, a cold-shock adaptation protein that is required for efficient processing of the 16S rRNA. Pssm-ID: 206726 [Multi-domain] Cd Length: 168 Bit Score: 234.28 E-value: 6.51e-78
|
|||||||||
MMR_HSR1 | pfam01926 | 50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete ... |
7-123 | 2.62e-31 | |||||
50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete activity of the protein of interacting with the 50S ribosome and binding of both adenine and guanine nucleotides, with a preference for guanine nucleotide. Pssm-ID: 460387 [Multi-domain] Cd Length: 113 Bit Score: 113.10 E-value: 2.62e-31
|
|||||||||
Name | Accession | Description | Interval | E-value | |||||
Era | COG1159 | GTPase Era, involved in 16S rRNA processing [Translation, ribosomal structure and biogenesis]; |
3-293 | 2.84e-156 | |||||
GTPase Era, involved in 16S rRNA processing [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440773 [Multi-domain] Cd Length: 290 Bit Score: 437.50 E-value: 2.84e-156
|
|||||||||
era | PRK00089 | GTPase Era; Reviewed |
1-293 | 7.20e-152 | |||||
GTPase Era; Reviewed Pssm-ID: 234624 [Multi-domain] Cd Length: 292 Bit Score: 426.39 E-value: 7.20e-152
|
|||||||||
era | TIGR00436 | GTP-binding protein Era; Era is an essential GTPase in Escherichia coli and many other ... |
6-275 | 4.43e-86 | |||||
GTP-binding protein Era; Era is an essential GTPase in Escherichia coli and many other bacteria. It plays a role in ribosome biogenesis. Few bacteria lack this protein. [Protein synthesis, Other] Pssm-ID: 129528 [Multi-domain] Cd Length: 270 Bit Score: 258.86 E-value: 4.43e-86
|
|||||||||
Era | cd04163 | E. coli Ras-like protein (Era) is a multifunctional GTPase; Era (E. coli Ras-like protein) is ... |
3-170 | 6.51e-78 | |||||
E. coli Ras-like protein (Era) is a multifunctional GTPase; Era (E. coli Ras-like protein) is a multifunctional GTPase found in all bacteria except some eubacteria. It binds to the 16S ribosomal RNA (rRNA) of the 30S subunit and appears to play a role in the assembly of the 30S subunit, possibly by chaperoning the 16S rRNA. It also contacts several assembly elements of the 30S subunit. Era couples cell growth with cytokinesis and plays a role in cell division and energy metabolism. Homologs have also been found in eukaryotes. Era contains two domains: the N-terminal GTPase domain and a C-terminal domain KH domain that is critical for RNA binding. Both domains are important for Era function. Era is functionally able to compensate for deletion of RbfA, a cold-shock adaptation protein that is required for efficient processing of the 16S rRNA. Pssm-ID: 206726 [Multi-domain] Cd Length: 168 Bit Score: 234.28 E-value: 6.51e-78
|
|||||||||
MMR_HSR1 | pfam01926 | 50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete ... |
7-123 | 2.62e-31 | |||||
50S ribosome-binding GTPase; The full-length GTPase protein is required for the complete activity of the protein of interacting with the 50S ribosome and binding of both adenine and guanine nucleotides, with a preference for guanine nucleotide. Pssm-ID: 460387 [Multi-domain] Cd Length: 113 Bit Score: 113.10 E-value: 2.62e-31
|
|||||||||
KH-II_Era | cd22534 | type II K-homology (KH) RNA-binding domain found in GTPase Era and similar proteins; GTPase ... |
192-275 | 3.74e-31 | |||||
type II K-homology (KH) RNA-binding domain found in GTPase Era and similar proteins; GTPase Era, also called ERA or GTP-binding protein Era, is an essential GTPase that binds both GDP and GTP, with nucleotide exchange occurring in the order of seconds whereas hydrolysis occurs in the order of minutes. It plays a role in numerous processes, including cell cycle regulation, energy metabolism, as a chaperone for 16S rRNA processing, and 30S ribosomal subunit biogenesis. Its presence in the 30S subunit may prevent translation initiation. GTPase Era may also be critical for maintaining cell growth and cell division rates. Members of this family contain only one canonical type II K-homology (KH) domain that has the signature motif GXXG (where X represents any amino acid). Pssm-ID: 411791 [Multi-domain] Cd Length: 87 Bit Score: 111.77 E-value: 3.74e-31
|
|||||||||
Der | COG1160 | Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; |
8-181 | 8.50e-31 | |||||
Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440774 [Multi-domain] Cd Length: 438 Bit Score: 119.74 E-value: 8.50e-31
|
|||||||||
EngA1 | cd01894 | EngA1 GTPase contains the first domain of EngA; This EngA1 subfamily CD represents the first ... |
9-170 | 1.32e-30 | |||||
EngA1 GTPase contains the first domain of EngA; This EngA1 subfamily CD represents the first GTPase domain of EngA and its orthologs, which are composed of two adjacent GTPase domains. Since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Although the exact function of these proteins has not been elucidated, studies have revealed that the E. coli EngA homolog, Der, and Neisseria gonorrhoeae EngA are essential for cell viability. A recent report suggests that E. coli Der functions in ribosome assembly and stability. Pssm-ID: 206681 [Multi-domain] Cd Length: 157 Bit Score: 112.53 E-value: 1.32e-30
|
|||||||||
PRK00093 | PRK00093 | GTP-binding protein Der; Reviewed |
8-181 | 4.48e-30 | |||||
GTP-binding protein Der; Reviewed Pssm-ID: 234628 [Multi-domain] Cd Length: 435 Bit Score: 117.46 E-value: 4.48e-30
|
|||||||||
Era_like | cd00880 | E. coli Ras-like protein (Era)-like GTPase; The Era (E. coli Ras-like protein)-like family ... |
9-170 | 2.20e-29 | |||||
E. coli Ras-like protein (Era)-like GTPase; The Era (E. coli Ras-like protein)-like family includes several distinct subfamilies (TrmE/ThdF, FeoB, YihA (EngB), Era, and EngA/YfgK) that generally show sequence conservation in the region between the Walker A and B motifs (G1 and G3 box motifs), to the exclusion of other GTPases. TrmE is ubiquitous in bacteria and is a widespread mitochondrial protein in eukaryotes, but is absent from archaea. The yeast member of TrmE family, MSS1, is involved in mitochondrial translation; bacterial members are often present in translation-related operons. FeoB represents an unusual adaptation of GTPases for high-affinity iron (II) transport. YihA (EngB) family of GTPases is typified by the E. coli YihA, which is an essential protein involved in cell division control. Era is characterized by a distinct derivative of the KH domain (the pseudo-KH domain) which is located C-terminal to the GTPase domain. EngA and its orthologs are composed of two GTPase domains and, since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Pssm-ID: 206646 [Multi-domain] Cd Length: 161 Bit Score: 109.64 E-value: 2.20e-29
|
|||||||||
small_GTP | TIGR00231 | small GTP-binding protein domain; Proteins with a small GTP-binding domain recognized by this ... |
5-165 | 1.09e-25 | |||||
small GTP-binding protein domain; Proteins with a small GTP-binding domain recognized by this model include Ras, RhoA, Rab11, translation elongation factor G, translation initiation factor IF-2, tetratcycline resistance protein TetM, CDC42, Era, ADP-ribosylation factors, tdhF, and many others. In some proteins the domain occurs more than once.This model recognizes a large number of small GTP-binding proteins and related domains in larger proteins. Note that the alpha chains of heterotrimeric G proteins are larger proteins in which the NKXD motif is separated from the GxxxxGK[ST] motif (P-loop) by a long insert and are not easily detected by this model. [Unknown function, General] Pssm-ID: 272973 [Multi-domain] Cd Length: 162 Bit Score: 99.75 E-value: 1.09e-25
|
|||||||||
trmE | cd04164 | trmE is a tRNA modification GTPase; TrmE (MnmE, ThdF, MSS1) is a 3-domain protein found in ... |
8-164 | 2.00e-25 | |||||
trmE is a tRNA modification GTPase; TrmE (MnmE, ThdF, MSS1) is a 3-domain protein found in bacteria and eukaryotes. It controls modification of the uridine at the wobble position (U34) of tRNAs that read codons ending with A or G in the mixed codon family boxes. TrmE contains a GTPase domain that forms a canonical Ras-like fold. It functions a molecular switch GTPase, and apparently uses a conformational change associated with GTP hydrolysis to promote the tRNA modification reaction, in which the conserved cysteine in the C-terminal domain is thought to function as a catalytic residue. In bacteria that are able to survive in extremely low pH conditions, TrmE regulates glutamate-dependent acid resistance. Pssm-ID: 206727 [Multi-domain] Cd Length: 159 Bit Score: 99.11 E-value: 2.00e-25
|
|||||||||
Der | COG1160 | Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; |
8-164 | 6.26e-25 | |||||
Double Era-like domain GTPase Der [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440774 [Multi-domain] Cd Length: 438 Bit Score: 103.18 E-value: 6.26e-25
|
|||||||||
EngA2 | cd01895 | EngA2 GTPase contains the second domain of EngA; This EngA2 subfamily CD represents the second ... |
8-164 | 8.88e-25 | |||||
EngA2 GTPase contains the second domain of EngA; This EngA2 subfamily CD represents the second GTPase domain of EngA and its orthologs, which are composed of two adjacent GTPase domains. Since the sequences of the two domains are more similar to each other than to other GTPases, it is likely that an ancient gene duplication, rather than a fusion of evolutionarily distinct GTPases, gave rise to this family. Although the exact function of these proteins has not been elucidated, studies have revealed that the E. coli EngA homolog, Der, and Neisseria gonorrhoeae EngA are essential for cell viability. A recent report suggests that E. coli Der functions in ribosome assembly and stability. Pssm-ID: 206682 [Multi-domain] Cd Length: 174 Bit Score: 97.89 E-value: 8.88e-25
|
|||||||||
PRK00093 | PRK00093 | GTP-binding protein Der; Reviewed |
8-164 | 1.05e-24 | |||||
GTP-binding protein Der; Reviewed Pssm-ID: 234628 [Multi-domain] Cd Length: 435 Bit Score: 102.82 E-value: 1.05e-24
|
|||||||||
MnmE | COG0486 | tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE [Translation, ribosomal ... |
8-164 | 2.09e-24 | |||||
tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE [Translation, ribosomal structure and biogenesis]; tRNA U34 5-carboxymethylaminomethyl modifying GTPase MnmE/TrmE is part of the Pathway/BioSystem: tRNA modification Pssm-ID: 440253 [Multi-domain] Cd Length: 448 Bit Score: 102.06 E-value: 2.09e-24
|
|||||||||
trmE | PRK05291 | tRNA uridine-5-carboxymethylaminomethyl(34) synthesis GTPase MnmE; |
8-164 | 1.31e-23 | |||||
tRNA uridine-5-carboxymethylaminomethyl(34) synthesis GTPase MnmE; Pssm-ID: 235392 [Multi-domain] Cd Length: 449 Bit Score: 99.80 E-value: 1.31e-23
|
|||||||||
Ras_like_GTPase | cd00882 | Rat sarcoma (Ras)-like superfamily of small guanosine triphosphatases (GTPases); Ras-like ... |
9-164 | 2.65e-23 | |||||
Rat sarcoma (Ras)-like superfamily of small guanosine triphosphatases (GTPases); Ras-like GTPase superfamily. The Ras-like superfamily of small GTPases consists of several families with an extremely high degree of structural and functional similarity. The Ras superfamily is divided into at least four families in eukaryotes: the Ras, Rho, Rab, and Sar1/Arf families. This superfamily also includes proteins like the GTP translation factors, Era-like GTPases, and G-alpha chain of the heterotrimeric G proteins. Members of the Ras superfamily regulate a wide variety of cellular functions: the Ras family regulates gene expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates nucleocytoplasmic transport and microtubule organization. The GTP translation factor family regulates initiation, elongation, termination, and release in translation, and the Era-like GTPase family regulates cell division, sporulation, and DNA replication. Members of the Ras superfamily are identified by the GTP binding site, which is made up of five characteristic sequence motifs, and the switch I and switch II regions. Pssm-ID: 206648 [Multi-domain] Cd Length: 161 Bit Score: 93.68 E-value: 2.65e-23
|
|||||||||
MnmE_helical | pfam12631 | MnmE helical domain; The tRNA modification GTPase MnmE consists of three domains. An ... |
8-164 | 2.35e-22 | |||||
MnmE helical domain; The tRNA modification GTPase MnmE consists of three domains. An N-terminal domain, a helical domain and a GTPase domain which is nested within the helical domain. This family represents the helical domain. Pssm-ID: 463649 [Multi-domain] Cd Length: 326 Bit Score: 94.85 E-value: 2.35e-22
|
|||||||||
HflX | cd01878 | HflX GTPase family; HflX subfamily. A distinct conserved domain with a glycine-rich segment ... |
8-164 | 1.73e-18 | |||||
HflX GTPase family; HflX subfamily. A distinct conserved domain with a glycine-rich segment N-terminal of the GTPase domain characterizes the HflX subfamily. The E. coli HflX has been implicated in the control of the lambda cII repressor proteolysis, but the actual biological functions of these GTPases remain unclear. HflX is widespread, but not universally represented in all three superkingdoms. Pssm-ID: 206666 [Multi-domain] Cd Length: 204 Bit Score: 81.74 E-value: 1.73e-18
|
|||||||||
Obg | cd01898 | Obg GTPase; The Obg nucleotide binding protein subfamily has been implicated in stress ... |
8-170 | 2.19e-18 | |||||
Obg GTPase; The Obg nucleotide binding protein subfamily has been implicated in stress response, chromosome partitioning, replication initiation, mycelium development, and sporulation. Obg proteins are among a large group of GTP binding proteins conserved from bacteria to humans. The E. coli homolog, ObgE is believed to function in ribosomal biogenesis. Members of the subfamily contain two equally and highly conserved domains, a C-terminal GTP binding domain and an N-terminal glycine-rich domain. Pssm-ID: 206685 [Multi-domain] Cd Length: 170 Bit Score: 80.55 E-value: 2.19e-18
|
|||||||||
obgE | PRK12299 | GTPase CgtA; Reviewed |
8-174 | 2.95e-17 | |||||
GTPase CgtA; Reviewed Pssm-ID: 237048 [Multi-domain] Cd Length: 335 Bit Score: 80.50 E-value: 2.95e-17
|
|||||||||
Gem1 | COG1100 | GTPase SAR1 family domain [General function prediction only]; |
8-162 | 1.83e-16 | |||||
GTPase SAR1 family domain [General function prediction only]; Pssm-ID: 440717 [Multi-domain] Cd Length: 177 Bit Score: 75.40 E-value: 1.83e-16
|
|||||||||
PRK09518 | PRK09518 | bifunctional cytidylate kinase/GTPase Der; Reviewed |
8-162 | 5.09e-16 | |||||
bifunctional cytidylate kinase/GTPase Der; Reviewed Pssm-ID: 236546 [Multi-domain] Cd Length: 712 Bit Score: 78.30 E-value: 5.09e-16
|
|||||||||
GTP_EFTU | pfam00009 | Elongation factor Tu GTP binding domain; This domain contains a P-loop motif, also found in ... |
8-171 | 2.91e-15 | |||||
Elongation factor Tu GTP binding domain; This domain contains a P-loop motif, also found in several other families such as pfam00071, pfam00025 and pfam00063. Elongation factor Tu consists of three structural domains, this plus two C-terminal beta barrel domains. Pssm-ID: 425418 [Multi-domain] Cd Length: 187 Bit Score: 72.56 E-value: 2.91e-15
|
|||||||||
GTP_translation_factor | cd00881 | GTP translation factor family primarily contains translation initiation, elongation and ... |
8-171 | 4.59e-15 | |||||
GTP translation factor family primarily contains translation initiation, elongation and release factors; The GTP translation factor family consists primarily of translation initiation, elongation, and release factors, which play specific roles in protein translation. In addition, the family includes Snu114p, a component of the U5 small nuclear riboprotein particle which is a component of the spliceosome and is involved in excision of introns, TetM, a tetracycline resistance gene that protects the ribosome from tetracycline binding, and the unusual subfamily CysN/ATPS, which has an unrelated function (ATP sulfurylase) acquired through lateral transfer of the EF1-alpha gene and development of a new function. Pssm-ID: 206647 [Multi-domain] Cd Length: 183 Bit Score: 71.94 E-value: 4.59e-15
|
|||||||||
HflX | COG2262 | 50S ribosomal subunit-associated GTPase HflX [Translation, ribosomal structure and biogenesis]; ... |
8-172 | 4.64e-15 | |||||
50S ribosomal subunit-associated GTPase HflX [Translation, ribosomal structure and biogenesis]; Pssm-ID: 441863 [Multi-domain] Cd Length: 419 Bit Score: 74.74 E-value: 4.64e-15
|
|||||||||
Obg | COG0536 | GTPase involved in cell partioning and DNA repair [Cell cycle control, cell division, ... |
8-181 | 6.05e-15 | |||||
GTPase involved in cell partioning and DNA repair [Cell cycle control, cell division, chromosome partitioning, Replication, recombination, and repair]; Pssm-ID: 440302 [Multi-domain] Cd Length: 343 Bit Score: 73.86 E-value: 6.05e-15
|
|||||||||
YihA_EngB | cd01876 | YihA (EngB) GTPase family; The YihA (EngB) subfamily of GTPases is typified by the E. coli ... |
8-165 | 7.17e-15 | |||||
YihA (EngB) GTPase family; The YihA (EngB) subfamily of GTPases is typified by the E. coli YihA, an essential protein involved in cell division control. YihA and its orthologs are small proteins that typically contain less than 200 amino acid residues and consists of the GTPase domain only (some of the eukaryotic homologs contain an N-terminal extension of about 120 residues that might be involved in organellar targeting). Homologs of yihA are found in most Gram-positive and Gram-negative pathogenic bacteria, with the exception of Mycobacterium tuberculosis. The broad-spectrum nature of YihA and its essentiality for cell viability in bacteria make it an attractive antibacterial target. Pssm-ID: 206665 [Multi-domain] Cd Length: 170 Bit Score: 71.00 E-value: 7.17e-15
|
|||||||||
PRK09518 | PRK09518 | bifunctional cytidylate kinase/GTPase Der; Reviewed |
6-174 | 8.36e-15 | |||||
bifunctional cytidylate kinase/GTPase Der; Reviewed Pssm-ID: 236546 [Multi-domain] Cd Length: 712 Bit Score: 74.45 E-value: 8.36e-15
|
|||||||||
Nog1 | COG1084 | GTP-binding protein, GTP1/Obg family [General function prediction only]; |
12-164 | 2.71e-14 | |||||
GTP-binding protein, GTP1/Obg family [General function prediction only]; Pssm-ID: 440701 [Multi-domain] Cd Length: 330 Bit Score: 71.79 E-value: 2.71e-14
|
|||||||||
Obg_CgtA | TIGR02729 | Obg family GTPase CgtA; This model describes a univeral, mostly one-gene-per-genome ... |
8-170 | 3.82e-14 | |||||
Obg family GTPase CgtA; This model describes a univeral, mostly one-gene-per-genome GTP-binding protein that associates with ribosomal subunits and appears to play a role in ribosomal RNA maturation. This GTPase, related to the nucleolar protein Obg, is designated CgtA in bacteria. Mutations in this gene are pleiotropic, but it appears that effects on cellular functions such as chromosome partition may be secondary to the effect on ribosome structure. Recent work done in Vibrio cholerae shows an essential role in the stringent response, in which RelA-dependent ability to synthesize the alarmone ppGpp is required for deletion of this GTPase to be lethal. [Protein synthesis, Other] Pssm-ID: 274271 [Multi-domain] Cd Length: 328 Bit Score: 71.68 E-value: 3.82e-14
|
|||||||||
KH_2 | pfam07650 | KH domain; |
206-278 | 4.07e-14 | |||||
KH domain; Pssm-ID: 429574 [Multi-domain] Cd Length: 78 Bit Score: 66.04 E-value: 4.07e-14
|
|||||||||
GTP_HflX | TIGR03156 | GTP-binding protein HflX; This protein family is one of a number of homologous small, ... |
8-170 | 7.85e-14 | |||||
GTP-binding protein HflX; This protein family is one of a number of homologous small, well-conserved GTP-binding proteins with pleiotropic effects. Bacterial members are designated HflX, following the naming convention in Escherichia coli where HflX is encoded immediately downstream of the RNA chaperone Hfq, and immediately upstream of HflKC, a membrane-associated protease pair with an important housekeeping function. Over large numbers of other bacterial genomes, the pairing with hfq is more significant than with hflK and hlfC. The gene from Homo sapiens in this family has been named PGPL (pseudoautosomal GTP-binding protein-like). [Unknown function, General] Pssm-ID: 274455 [Multi-domain] Cd Length: 351 Bit Score: 70.96 E-value: 7.85e-14
|
|||||||||
mnmE_trmE_thdF | TIGR00450 | tRNA modification GTPase TrmE; TrmE, also called MnmE and previously designated ThdF ... |
8-130 | 9.63e-14 | |||||
tRNA modification GTPase TrmE; TrmE, also called MnmE and previously designated ThdF (thiophene and furan oxidation protein), is a GTPase involved in tRNA modification to create 5-methylaminomethyl-2-thiouridine in the wobble position of some tRNAs. This protein and GidA form an alpha2/beta2 heterotetramer. [Protein synthesis, tRNA and rRNA base modification] Pssm-ID: 273083 [Multi-domain] Cd Length: 442 Bit Score: 70.98 E-value: 9.63e-14
|
|||||||||
PRK03003 | PRK03003 | GTP-binding protein Der; Reviewed |
8-188 | 1.30e-13 | |||||
GTP-binding protein Der; Reviewed Pssm-ID: 179525 [Multi-domain] Cd Length: 472 Bit Score: 70.77 E-value: 1.30e-13
|
|||||||||
PRK03003 | PRK03003 | GTP-binding protein Der; Reviewed |
8-162 | 2.73e-13 | |||||
GTP-binding protein Der; Reviewed Pssm-ID: 179525 [Multi-domain] Cd Length: 472 Bit Score: 69.61 E-value: 2.73e-13
|
|||||||||
NOG | cd01897 | Nucleolar GTP-binding protein (NOG); NOG1 is a nucleolar GTP-binding protein present in ... |
8-164 | 7.77e-13 | |||||
Nucleolar GTP-binding protein (NOG); NOG1 is a nucleolar GTP-binding protein present in eukaryotes ranging from trypanosomes to humans. NOG1 is functionally linked to ribosome biogenesis and found in association with the nuclear pore complexes and identified in many preribosomal complexes. Thus, defects in NOG1 can lead to defects in 60S biogenesis. The S. cerevisiae NOG1 gene is essential for cell viability, and mutations in the predicted G motifs abrogate function. It is a member of the ODN family of GTP-binding proteins that also includes the bacterial Obg and DRG proteins. Pssm-ID: 206684 [Multi-domain] Cd Length: 167 Bit Score: 65.27 E-value: 7.77e-13
|
|||||||||
DLP_2 | cd09912 | Dynamin-like protein including dynamins, mitofusins, and guanylate-binding proteins; The ... |
8-154 | 1.45e-12 | |||||
Dynamin-like protein including dynamins, mitofusins, and guanylate-binding proteins; The dynamin family of large mechanochemical GTPases includes the classical dynamins and dynamin-like proteins (DLPs) that are found throughout the Eukarya. This family also includes bacterial DLPs. These proteins catalyze membrane fission during clathrin-mediated endocytosis. Dynamin consists of five domains; an N-terminal G domain that binds and hydrolyzes GTP, a middle domain (MD) involved in self-assembly and oligomerization, a pleckstrin homology (PH) domain responsible for interactions with the plasma membrane, GED, which is also involved in self-assembly, and a proline arginine rich domain (PRD) that interacts with SH3 domains on accessory proteins. To date, three vertebrate dynamin genes have been identified; dynamin 1, which is brain specific, mediates uptake of synaptic vesicles in presynaptic terminals; dynamin-2 is expressed ubiquitously and similarly participates in membrane fission; mutations in the MD, PH and GED domains of dynamin 2 have been linked to human diseases such as Charcot-Marie-Tooth peripheral neuropathy and rare forms of centronuclear myopathy. Dynamin 3 participates in megakaryocyte progenitor amplification, and is also involved in cytoplasmic enlargement and the formation of the demarcation membrane system. This family also includes mitofusins (MFN1 and MFN2 in mammals) that are involved in mitochondrial fusion. Dynamin oligomerizes into helical structures around the neck of budding vesicles in a GTP hydrolysis-dependent manner. Pssm-ID: 206739 [Multi-domain] Cd Length: 180 Bit Score: 64.88 E-value: 1.45e-12
|
|||||||||
Obg_like | cd01881 | Obg-like family of GTPases consist of five subfamilies: Obg, DRG, YyaF/YchF, Ygr210, and NOG1; ... |
9-170 | 4.75e-12 | |||||
Obg-like family of GTPases consist of five subfamilies: Obg, DRG, YyaF/YchF, Ygr210, and NOG1; The Obg-like subfamily consists of five well-delimited, ancient subfamilies, namely Obg, DRG, YyaF/YchF, Ygr210, and NOG1. Four of these groups (Obg, DRG, YyaF/YchF, and Ygr210) are characterized by a distinct glycine-rich motif immediately following the Walker B motif (G3 box). Obg/CgtA is an essential gene that is involved in the initiation of sporulation and DNA replication in the bacteria Caulobacter and Bacillus, but its exact molecular role is unknown. Furthermore, several OBG family members possess a C-terminal RNA-binding domain, the TGS domain, which is also present in threonyl-tRNA synthetase and in bacterial guanosine polyphosphatase SpoT. Nog1 is a nucleolar protein that might function in ribosome assembly. The DRG and Nog1 subfamilies are ubiquitous in archaea and eukaryotes, the Ygr210 subfamily is present in archaea and fungi, and the Obg and YyaF/YchF subfamilies are ubiquitous in bacteria and eukaryotes. The Obg/Nog1 and DRG subfamilies appear to form one major branch of the Obg family and the Ygr210 and YchF subfamilies form another branch. No GEFs, GAPs, or GDIs for Obg have been identified. Pssm-ID: 206668 [Multi-domain] Cd Length: 167 Bit Score: 63.18 E-value: 4.75e-12
|
|||||||||
Rbg1 | COG1163 | Ribosome-interacting GTPase RBG1 [Translation, ribosomal structure and biogenesis]; |
8-164 | 1.11e-11 | |||||
Ribosome-interacting GTPase RBG1 [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440777 [Multi-domain] Cd Length: 368 Bit Score: 64.43 E-value: 1.11e-11
|
|||||||||
obgE | PRK12297 | GTPase CgtA; Reviewed |
8-184 | 1.67e-11 | |||||
GTPase CgtA; Reviewed Pssm-ID: 237046 [Multi-domain] Cd Length: 424 Bit Score: 64.35 E-value: 1.67e-11
|
|||||||||
FeoB_N | pfam02421 | Ferrous iron transport protein B; Escherichia coli has an iron(II) transport system (feo) ... |
8-164 | 2.64e-11 | |||||
Ferrous iron transport protein B; Escherichia coli has an iron(II) transport system (feo) which may make an important contribution to the iron supply of the cell under anaerobic conditions. FeoB has been identified as part of this transport system. FeoB is a large 700-800 amino acid integral membrane protein. The N terminus contains a P-loop motif suggesting that iron transport may be ATP dependent. Pssm-ID: 460552 [Multi-domain] Cd Length: 156 Bit Score: 60.54 E-value: 2.64e-11
|
|||||||||
obgE | PRK12298 | GTPase CgtA; Reviewed |
10-181 | 3.18e-11 | |||||
GTPase CgtA; Reviewed Pssm-ID: 237047 [Multi-domain] Cd Length: 390 Bit Score: 63.35 E-value: 3.18e-11
|
|||||||||
FeoB | cd01879 | Ferrous iron transport protein B (FeoB) family; Ferrous iron transport protein B (FeoB) ... |
9-164 | 6.57e-11 | |||||
Ferrous iron transport protein B (FeoB) family; Ferrous iron transport protein B (FeoB) subfamily. E. coli has an iron(II) transport system, known as feo, which may make an important contribution to the iron supply of the cell under anaerobic conditions. FeoB has been identified as part of this transport system. FeoB is a large 700-800 amino acid integral membrane protein. The N terminus contains a P-loop motif suggesting that iron transport may be ATP dependent. Pssm-ID: 206667 [Multi-domain] Cd Length: 159 Bit Score: 59.78 E-value: 6.57e-11
|
|||||||||
EngB | COG0218 | GTP-binding protein EngB required for normal cell division [Cell cycle control, cell division, ... |
8-165 | 1.14e-10 | |||||
GTP-binding protein EngB required for normal cell division [Cell cycle control, cell division, chromosome partitioning]; Pssm-ID: 439988 [Multi-domain] Cd Length: 194 Bit Score: 59.70 E-value: 1.14e-10
|
|||||||||
YeeP | COG3596 | Predicted GTPase [General function prediction only]; |
8-173 | 2.99e-10 | |||||
Predicted GTPase [General function prediction only]; Pssm-ID: 442815 [Multi-domain] Cd Length: 318 Bit Score: 60.16 E-value: 2.99e-10
|
|||||||||
SelB | cd04171 | SelB, the dedicated elongation factor for delivery of selenocysteinyl-tRNA to the ribosome; ... |
17-165 | 1.80e-09 | |||||
SelB, the dedicated elongation factor for delivery of selenocysteinyl-tRNA to the ribosome; SelB is an elongation factor needed for the co-translational incorporation of selenocysteine. Selenocysteine is coded by a UGA stop codon in combination with a specific downstream mRNA hairpin. In bacteria, the C-terminal part of SelB recognizes this hairpin, while the N-terminal part binds GTP and tRNA in analogy with elongation factor Tu (EF-Tu). It specifically recognizes the selenocysteine charged tRNAsec, which has a UCA anticodon, in an EF-Tu like manner. This allows insertion of selenocysteine at in-frame UGA stop codons. In E. coli SelB binds GTP, selenocysteyl-tRNAsec, and a stem-loop structure immediately downstream of the UGA codon (the SECIS sequence). The absence of active SelB prevents the participation of selenocysteyl-tRNAsec in translation. Archaeal and animal mechanisms of selenocysteine incorporation are more complex. Although the SECIS elements have different secondary structures and conserved elements between archaea and eukaryotes, they do share a common feature. Unlike in E. coli, these SECIS elements are located in the 3' UTRs. This group contains bacterial SelBs, as well as, one from archaea. Pssm-ID: 206734 [Multi-domain] Cd Length: 170 Bit Score: 55.69 E-value: 1.80e-09
|
|||||||||
FeoB | COG0370 | Fe2+ transporter FeoB [Inorganic ion transport and metabolism]; |
8-164 | 3.37e-09 | |||||
Fe2+ transporter FeoB [Inorganic ion transport and metabolism]; Pssm-ID: 440139 [Multi-domain] Cd Length: 662 Bit Score: 57.44 E-value: 3.37e-09
|
|||||||||
YfjP | cd11383 | YfjP GTPase; The Era (E. coli Ras-like protein)-like YfjP subfamily includes several ... |
9-162 | 3.77e-08 | |||||
YfjP GTPase; The Era (E. coli Ras-like protein)-like YfjP subfamily includes several uncharacterized bacterial GTPases that are similar to Era. They generally show sequence conservation in the region between the Walker A and B motifs (G1 and G3 box motifs), to the exclusion of other GTPases. Era is characterized by a distinct derivative of the KH domain (the pseudo-KH domain) which is located C-terminal to the GTPase domain. Pssm-ID: 206743 [Multi-domain] Cd Length: 140 Bit Score: 51.57 E-value: 3.77e-08
|
|||||||||
YlqF | cd01856 | Circularly permuted YlqF GTPase; Proteins of the YlqF family contain all sequence motifs ... |
8-64 | 5.54e-08 | |||||
Circularly permuted YlqF GTPase; Proteins of the YlqF family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. The YlqF subfamily is represented in all eukaryotes as well as a phylogenetically diverse array of bacteria (including gram-positive bacteria, proteobacteria, Synechocystis, Borrelia, and Thermotoga). Pssm-ID: 206749 [Multi-domain] Cd Length: 171 Bit Score: 51.38 E-value: 5.54e-08
|
|||||||||
DRG | cd01896 | Developmentally Regulated GTP-binding protein (DRG); The developmentally regulated GTP-binding ... |
8-63 | 9.29e-08 | |||||
Developmentally Regulated GTP-binding protein (DRG); The developmentally regulated GTP-binding protein (DRG) subfamily is an uncharacterized member of the Obg family, an evolutionary branch of GTPase superfamily proteins. GTPases act as molecular switches regulating diverse cellular processes. DRG2 and DRG1 comprise the DRG subfamily in eukaryotes. In view of their widespread expression in various tissues and high conservation among distantly related species in eukaryotes and archaea, DRG proteins may regulate fundamental cellular processes. It is proposed that the DRG subfamily proteins play their physiological roles through RNA binding. Pssm-ID: 206683 [Multi-domain] Cd Length: 233 Bit Score: 51.78 E-value: 9.29e-08
|
|||||||||
YjeQ_EngC | cd01854 | Ribosomal interacting GTPase YjeQ/EngC, a circularly permuted subfamily of the Ras GTPases; ... |
105-169 | 1.87e-07 | |||||
Ribosomal interacting GTPase YjeQ/EngC, a circularly permuted subfamily of the Ras GTPases; YjeQ (YloQ in Bacillus subtilis) is a ribosomal small subunit-dependent GTPase; hence also known as RsgA. YjeQ is a late-stage ribosomal biogenesis factor involved in the 30S subunit maturation, and it represents a protein family whose members are broadly conserved in bacteria and have been shown to be essential to the growth of E. coli and B. subtilis. Proteins of the YjeQ family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. All YjeQ family proteins display a unique domain architecture, which includes an N-terminal OB-fold RNA-binding domain, the central permuted GTPase domain, and a zinc knuckle-like C-terminal cysteine domain. Pssm-ID: 206747 [Multi-domain] Cd Length: 211 Bit Score: 50.47 E-value: 1.87e-07
|
|||||||||
RbgA | COG1161 | Ribosome biogenesis GTPase RbgA [Translation, ribosomal structure and biogenesis]; |
11-67 | 3.40e-07 | |||||
Ribosome biogenesis GTPase RbgA [Translation, ribosomal structure and biogenesis]; Pssm-ID: 440775 [Multi-domain] Cd Length: 279 Bit Score: 50.49 E-value: 3.40e-07
|
|||||||||
feoB | PRK09554 | Fe(2+) transporter permease subunit FeoB; |
8-64 | 1.04e-06 | |||||
Fe(2+) transporter permease subunit FeoB; Pssm-ID: 236563 [Multi-domain] Cd Length: 772 Bit Score: 50.10 E-value: 1.04e-06
|
|||||||||
HypB | COG0378 | Hydrogenase/urease maturation factor HypB, Ni2+-binding GTPase [Posttranslational modification, ... |
8-170 | 2.24e-06 | |||||
Hydrogenase/urease maturation factor HypB, Ni2+-binding GTPase [Posttranslational modification, protein turnover, chaperones]; Pssm-ID: 440147 [Multi-domain] Cd Length: 200 Bit Score: 47.36 E-value: 2.24e-06
|
|||||||||
LepA | cd01890 | LepA also known as Elongation Factor 4 (EF4); LepA (also known as elongation factor 4, EF4) ... |
17-164 | 4.71e-06 | |||||
LepA also known as Elongation Factor 4 (EF4); LepA (also known as elongation factor 4, EF4) belongs to the GTPase family and exhibits significant homology to the translation factors EF-G and EF-Tu, indicating its possible involvement in translation and association with the ribosome. LepA is ubiquitous in bacteria and eukaryota (e.g. yeast GUF1p), but is missing from archaea. This pattern of phyletic distribution suggests that LepA evolved through a duplication of the EF-G gene in bacteria, followed by early transfer into the eukaryotic lineage, most likely from the promitochondrial endosymbiont. Yeast GUF1p is not essential and mutant cells did not reveal any marked phenotype. Pssm-ID: 206677 [Multi-domain] Cd Length: 179 Bit Score: 45.99 E-value: 4.71e-06
|
|||||||||
RsgA_GTPase | pfam03193 | RsgA GTPase; RsgA (also known as EngC and YjeQ) represents a protein family whose members are ... |
111-170 | 1.21e-05 | |||||
RsgA GTPase; RsgA (also known as EngC and YjeQ) represents a protein family whose members are broadly conserved in bacteria and are indispensable for growth. The GTPase domain of RsgA is very similar to several P-loop GTPases, but differs in having a circular permutation of the GTPase structure described by a G4-G1-G3 pattern. Pssm-ID: 427191 [Multi-domain] Cd Length: 174 Bit Score: 44.84 E-value: 1.21e-05
|
|||||||||
PRK11058 | PRK11058 | GTPase HflX; Provisional |
8-163 | 1.21e-05 | |||||
GTPase HflX; Provisional Pssm-ID: 182934 [Multi-domain] Cd Length: 426 Bit Score: 46.25 E-value: 1.21e-05
|
|||||||||
feoB | TIGR00437 | ferrous iron transporter FeoB; FeoB (773 amino acids in E. coli), a cytoplasmic membrane ... |
12-164 | 3.44e-05 | |||||
ferrous iron transporter FeoB; FeoB (773 amino acids in E. coli), a cytoplasmic membrane protein required for iron(II) update, is encoded in an operon with FeoA (75 amino acids), which is also required, and is regulated by Fur. There appear to be two copies in Archaeoglobus fulgidus and Clostridium acetobutylicum. [Transport and binding proteins, Cations and iron carrying compounds] Pssm-ID: 273077 [Multi-domain] Cd Length: 591 Bit Score: 45.12 E-value: 3.44e-05
|
|||||||||
RocCOR | cd09914 | Ras of complex proteins (Roc) C-terminal of Roc (COR) domain family; RocCOR (or Roco) protein ... |
10-164 | 6.85e-05 | |||||
Ras of complex proteins (Roc) C-terminal of Roc (COR) domain family; RocCOR (or Roco) protein family is characterized by a superdomain containing a Ras-like GTPase domain, called Roc (Ras of complex proteins), and a characteristic second domain called COR (C-terminal of Roc). A kinase domain and diverse regulatory domains are also often found in Roco proteins. Their functions are diverse; in Dictyostelium discoideum, which encodes 11 Roco proteins, they are involved in cell division, chemotaxis and development, while in human, where 4 Roco proteins (LRRK1, LRRK2, DAPK1, and MFHAS1) are encoded, these proteins are involved in epilepsy and cancer. Mutations in LRRK2 (leucine-rich repeat kinase 2) are known to cause familial Parkinson's disease. Pssm-ID: 206741 [Multi-domain] Cd Length: 161 Bit Score: 42.32 E-value: 6.85e-05
|
|||||||||
EHD | cd09913 | Eps15 homology domain (EHD), C-terminal domain; Dynamin-like C-terminal Eps15 homology domain ... |
56-133 | 1.36e-04 | |||||
Eps15 homology domain (EHD), C-terminal domain; Dynamin-like C-terminal Eps15 homology domain (EHD) proteins regulate endocytic events; they have been linked to a number of Rab proteins through their association with mutual effectors, suggesting a coordinate role in endocytic regulation. Eukaryotic EHDs comprise four members (EHD1-4) in mammals and single members in Caenorhabditis elegans (Rme-1), Drosophila melanogaster (Past1) as well as several eukaryotic parasites. EHD1 regulates trafficking of multiple receptors from the endocytic recycling compartment (ERC) to the plasma membrane; EHD2 regulates trafficking from the plasma membrane by controlling Rac1 activity; EHD3 regulates endosome-to-Golgi transport, and preserves Golgi morphology; EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward the recycling compartment as well as late endocytic pathway. Rme-1, an ortholog of human EHD1, controls the recycling of internalized receptors from the endocytic recycling compartment to the plasma membrane. In D. melanogaster, deletion of the Past1 gene leads to infertility as well as premature death of adult flies. Arabidopsis thaliana also has homologs of EHD proteins (AtEHD1 and AtEHD2), possibly involved in regulating endocytosis and signaling. Pssm-ID: 206740 Cd Length: 241 Bit Score: 42.26 E-value: 1.36e-04
|
|||||||||
PRK00098 | PRK00098 | GTPase RsgA; Reviewed |
70-164 | 2.91e-04 | |||||
GTPase RsgA; Reviewed Pssm-ID: 234631 [Multi-domain] Cd Length: 298 Bit Score: 41.73 E-value: 2.91e-04
|
|||||||||
PRK04213 | PRK04213 | GTP-binding protein EngB; |
8-96 | 3.84e-04 | |||||
GTP-binding protein EngB; Pssm-ID: 179790 [Multi-domain] Cd Length: 201 Bit Score: 40.67 E-value: 3.84e-04
|
|||||||||
MJ1464 | cd01859 | An uncharacterized, circularly permuted subfamily of the Ras GTPases; This family represents ... |
6-63 | 5.08e-04 | |||||
An uncharacterized, circularly permuted subfamily of the Ras GTPases; This family represents archaeal GTPase typified by the protein MJ1464 from Methanococcus jannaschii. The members of this family show a circular permutation of the GTPase signature motifs so that C-terminal strands 5, 6, and 7 (strands 6 contain the NKxD motif) are relocated to the N terminus. Pssm-ID: 206752 [Multi-domain] Cd Length: 157 Bit Score: 39.99 E-value: 5.08e-04
|
|||||||||
CysN_ATPS | cd04166 | CysN, together with protein CysD, forms the ATP sulfurylase (ATPS) complex; CysN_ATPS ... |
55-128 | 6.61e-04 | |||||
CysN, together with protein CysD, forms the ATP sulfurylase (ATPS) complex; CysN_ATPS subfamily. CysN, together with protein CysD, form the ATP sulfurylase (ATPS) complex in some bacteria and lower eukaryotes. ATPS catalyzes the production of ATP sulfurylase (APS) and pyrophosphate (PPi) from ATP and sulfate. CysD, which catalyzes ATP hydrolysis, is a member of the ATP pyrophosphatase (ATP PPase) family. CysN hydrolysis of GTP is required for CysD hydrolysis of ATP; however, CysN hydrolysis of GTP is not dependent on CysD hydrolysis of ATP. CysN is an example of lateral gene transfer followed by acquisition of new function. In many organisms, an ATPS exists which is not GTP-dependent and shares no sequence or structural similarity to CysN. Pssm-ID: 206729 [Multi-domain] Cd Length: 209 Bit Score: 40.25 E-value: 6.61e-04
|
|||||||||
YqeH | cd01855 | Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH ... |
10-63 | 1.14e-03 | |||||
Circularly permuted YqeH GTPase; YqeH is an essential GTP-binding protein. Depletion of YqeH induces an excess initiation of DNA replication, suggesting that it negatively controls initiation of chromosome replication. The YqeH subfamily is common in eukaryotes and sporadically present in bacteria with probable acquisition by plants from chloroplasts. Proteins of the YqeH family contain all sequence motifs typical of the vast class of P-loop-containing GTPases, but show a circular permutation, with a G4-G1-G3 pattern of motifs as opposed to the regular G1-G3-G4 pattern seen in most GTPases. Pssm-ID: 206748 [Multi-domain] Cd Length: 191 Bit Score: 39.17 E-value: 1.14e-03
|
|||||||||
SelB | COG3276 | Selenocysteine-specific translation elongation factor SelB [Translation, ribosomal structure ... |
57-174 | 1.17e-03 | |||||
Selenocysteine-specific translation elongation factor SelB [Translation, ribosomal structure and biogenesis]; Selenocysteine-specific translation elongation factor SelB is part of the Pathway/BioSystem: Translation factors Pssm-ID: 442507 [Multi-domain] Cd Length: 630 Bit Score: 40.28 E-value: 1.17e-03
|
|||||||||
HypB | cd05390 | nickel incorporation protein HypB; HypB is one of numerous accessory proteins required for the ... |
7-165 | 1.19e-03 | |||||
nickel incorporation protein HypB; HypB is one of numerous accessory proteins required for the maturation of nickel-dependent hydrogenases, like carbon monoxide dehydrogenase or urease. HypB is a GTP-binding protein and has GTP hyrolase activity. It forms homodimer and is capable of binding two nickel ions and two zinc ions. The active site is located on the dimer interface. Energy from hydrolysis of GTP is used to insert nickels into hydrogenases. Pssm-ID: 349775 Cd Length: 203 Bit Score: 39.12 E-value: 1.19e-03
|
|||||||||
PRK12288 | PRK12288 | small ribosomal subunit biogenesis GTPase RsgA; |
119-162 | 1.51e-03 | |||||
small ribosomal subunit biogenesis GTPase RsgA; Pssm-ID: 237039 [Multi-domain] Cd Length: 347 Bit Score: 39.84 E-value: 1.51e-03
|
|||||||||
IF2_eIF5B | cd01887 | Initiation Factor 2 (IF2)/ eukaryotic Initiation Factor 5B (eIF5B) family; IF2/eIF5B ... |
55-164 | 1.62e-03 | |||||
Initiation Factor 2 (IF2)/ eukaryotic Initiation Factor 5B (eIF5B) family; IF2/eIF5B contribute to ribosomal subunit joining and function as GTPases that are maximally activated by the presence of both ribosomal subunits. As seen in other GTPases, IF2/IF5B undergoes conformational changes between its GTP- and GDP-bound states. Eukaryotic IF2/eIF5Bs possess three characteristic segments, including a divergent N-terminal region followed by conserved central and C-terminal segments. This core region is conserved among all known eukaryotic and archaeal IF2/eIF5Bs and eubacterial IF2s. Pssm-ID: 206674 [Multi-domain] Cd Length: 169 Bit Score: 38.61 E-value: 1.62e-03
|
|||||||||
MMR_HSR1_Xtn | pfam16897 | C-terminal region of MMR_HSR1 domain; MMR_HSR1_Xtn is the C-terminal region of some members of ... |
120-164 | 3.00e-03 | |||||
C-terminal region of MMR_HSR1 domain; MMR_HSR1_Xtn is the C-terminal region of some members of the MMR_HSR1 family. Pssm-ID: 465301 [Multi-domain] Cd Length: 105 Bit Score: 36.64 E-value: 3.00e-03
|
|||||||||
YlqF_related_GTPase | cd01849 | Circularly permuted YlqF-related GTPases; These proteins are found in bacteria, eukaryotes, ... |
86-165 | 3.44e-03 | |||||
Circularly permuted YlqF-related GTPases; These proteins are found in bacteria, eukaryotes, and archaea. They all exhibit a circular permutation of the GTPase signature motifs so that the order of the conserved G box motifs is G4-G5-G1-G2-G3, with G4 and G5 being permuted from the C-terminal region of proteins in the Ras superfamily to the N-terminus of YlqF-related GTPases. Pssm-ID: 206746 [Multi-domain] Cd Length: 146 Bit Score: 37.36 E-value: 3.44e-03
|
|||||||||
YlqF_related_GTPase | cd01849 | Circularly permuted YlqF-related GTPases; These proteins are found in bacteria, eukaryotes, ... |
8-63 | 6.26e-03 | |||||
Circularly permuted YlqF-related GTPases; These proteins are found in bacteria, eukaryotes, and archaea. They all exhibit a circular permutation of the GTPase signature motifs so that the order of the conserved G box motifs is G4-G5-G1-G2-G3, with G4 and G5 being permuted from the C-terminal region of proteins in the Ras superfamily to the N-terminus of YlqF-related GTPases. Pssm-ID: 206746 [Multi-domain] Cd Length: 146 Bit Score: 36.59 E-value: 6.26e-03
|
|||||||||
KH-II_30S_S3 | cd02412 | type II K-homology (KH) RNA-binding domain found in 30S ribosomal protein S3 and similar ... |
223-277 | 9.29e-03 | |||||
type II K-homology (KH) RNA-binding domain found in 30S ribosomal protein S3 and similar proteins; 30S ribosomal protein S3, also called small ribosomal subunit protein uS3, is part of the head region of the 30S ribosomal subunit and binds to the lower part of the 30S subunit head. It may also bind mRNA in the 70S ribosome, positioning it for translation. S3 protein is believed to interact with mRNA as it threads its way from the latch into the channel. Members of this family contain only one canonical type II K-homology (KH) domain that has the signature motif GXXG (where X represents any amino acid). Pssm-ID: 411783 Cd Length: 108 Bit Score: 35.11 E-value: 9.29e-03
|
|||||||||
TypA_BipA | cd01891 | Tyrosine phosphorylated protein A (TypA)/BipA family belongs to ribosome-binding GTPases; BipA ... |
8-125 | 9.80e-03 | |||||
Tyrosine phosphorylated protein A (TypA)/BipA family belongs to ribosome-binding GTPases; BipA is a protein belonging to the ribosome-binding family of GTPases and is widely distributed in bacteria and plants. BipA was originally described as a protein that is induced in Salmonella typhimurium after exposure to bactericidal/permeability-inducing protein (a cationic antimicrobial protein produced by neutrophils), and has since been identified in E. coli as well. The properties thus far described for BipA are related to its role in the process of pathogenesis by enteropathogenic E. coli. It appears to be involved in the regulation of several processes important for infection, including rearrangements of the cytoskeleton of the host, bacterial resistance to host defense peptides, flagellum-mediated cell motility, and expression of K5 capsular genes. It has been proposed that BipA may utilize a novel mechanism to regulate the expression of target genes. In addition, BipA from enteropathogenic E. coli has been shown to be phosphorylated on a tyrosine residue, while BipA from Salmonella and from E. coli K12 strains is not phosphorylated under the conditions assayed. The phosphorylation apparently modifies the rate of nucleotide hydrolysis, with the phosphorylated form showing greatly increased GTPase activity. Pssm-ID: 206678 [Multi-domain] Cd Length: 194 Bit Score: 36.42 E-value: 9.80e-03
|
|||||||||
Blast search parameters | ||||
|