Gp37-like protein [Bacillus sp. MMSF_3328]
List of domain hits
Name | Accession | Description | Interval | E-value | ||||||
Sipho_Gp37 | pfam14594 | Siphovirus ReqiPepy6 Gp37-like protein; This family includes numerous phage proteins from ... |
18-342 | 2.62e-115 | ||||||
Siphovirus ReqiPepy6 Gp37-like protein; This family includes numerous phage proteins from Siphoviruses. The function of this protein is uncertain, but it is related to pfam06605. In Rhodococcus phage ReqiPepy6 this protein is called Gp37. : Pssm-ID: 434058 Cd Length: 336 Bit Score: 358.19 E-value: 2.62e-115
|
||||||||||
gly_rich_SclB super family | cl45768 | LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like ... |
412-706 | 1.53e-32 | ||||||
LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like protein 2) is an LPXTG-anchored surface-anchored adhesin with a variable-length region of triple helix-forming collagen-like Gly-Xaa-Xaa repeats. The actual alignment was detected with superfamily member NF038329: Pssm-ID: 468478 [Multi-domain] Cd Length: 440 Bit Score: 131.95 E-value: 1.53e-32
|
||||||||||
gly_rich_SclB super family | cl45768 | LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like ... |
635-821 | 2.71e-28 | ||||||
LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like protein 2) is an LPXTG-anchored surface-anchored adhesin with a variable-length region of triple helix-forming collagen-like Gly-Xaa-Xaa repeats. The actual alignment was detected with superfamily member NF038329: Pssm-ID: 468478 [Multi-domain] Cd Length: 440 Bit Score: 119.24 E-value: 2.71e-28
|
||||||||||
pyocin_knob | cd19958 | knob domain of R1 and R2 pyocins and similar domains; The knob domain is present as a tandemly ... |
896-982 | 7.23e-05 | ||||||
knob domain of R1 and R2 pyocins and similar domains; The knob domain is present as a tandemly repeated structural domain in R-type pyocins, which are high-molecular weight bacteriocins produced by some strains of Pseudomonas aeruginosa to specifically kill other strains of the same species. R-type pyocins are structurally similar to simple contractile tails, such as those of phage P2 and Mu, and they punch a hole in the bacterial envelope to efficiently kill target cells. The second knob domain may contain regions responsible for determining the killing spectrum. Knob-like domains occur in host-recognition and binding proteins of, not only pyocins, but also phages, such as in phage K1F endosialidase (not represented by this model), where it may interact with sialic acid, the cell surface molecule that is recognized during infection. : Pssm-ID: 410997 [Multi-domain] Cd Length: 80 Bit Score: 41.94 E-value: 7.23e-05
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
Sipho_Gp37 | pfam14594 | Siphovirus ReqiPepy6 Gp37-like protein; This family includes numerous phage proteins from ... |
18-342 | 2.62e-115 | ||||||
Siphovirus ReqiPepy6 Gp37-like protein; This family includes numerous phage proteins from Siphoviruses. The function of this protein is uncertain, but it is related to pfam06605. In Rhodococcus phage ReqiPepy6 this protein is called Gp37. Pssm-ID: 434058 Cd Length: 336 Bit Score: 358.19 E-value: 2.62e-115
|
||||||||||
gly_rich_SclB | NF038329 | LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like ... |
412-706 | 1.53e-32 | ||||||
LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like protein 2) is an LPXTG-anchored surface-anchored adhesin with a variable-length region of triple helix-forming collagen-like Gly-Xaa-Xaa repeats. Pssm-ID: 468478 [Multi-domain] Cd Length: 440 Bit Score: 131.95 E-value: 1.53e-32
|
||||||||||
gly_rich_SclB | NF038329 | LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like ... |
635-821 | 2.71e-28 | ||||||
LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like protein 2) is an LPXTG-anchored surface-anchored adhesin with a variable-length region of triple helix-forming collagen-like Gly-Xaa-Xaa repeats. Pssm-ID: 468478 [Multi-domain] Cd Length: 440 Bit Score: 119.24 E-value: 2.71e-28
|
||||||||||
gly_rich_SclB | NF038329 | LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like ... |
636-819 | 1.50e-27 | ||||||
LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like protein 2) is an LPXTG-anchored surface-anchored adhesin with a variable-length region of triple helix-forming collagen-like Gly-Xaa-Xaa repeats. Pssm-ID: 468478 [Multi-domain] Cd Length: 440 Bit Score: 116.93 E-value: 1.50e-27
|
||||||||||
SPT5 | COG5164 | Transcription elongation factor SPT5 [Transcription]; |
636-938 | 2.64e-15 | ||||||
Transcription elongation factor SPT5 [Transcription]; Pssm-ID: 444063 [Multi-domain] Cd Length: 495 Bit Score: 80.07 E-value: 2.64e-15
|
||||||||||
SPT5 | COG5164 | Transcription elongation factor SPT5 [Transcription]; |
409-706 | 8.10e-15 | ||||||
Transcription elongation factor SPT5 [Transcription]; Pssm-ID: 444063 [Multi-domain] Cd Length: 495 Bit Score: 78.53 E-value: 8.10e-15
|
||||||||||
gly_rich_SclB | NF038329 | LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like ... |
412-506 | 1.14e-12 | ||||||
LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like protein 2) is an LPXTG-anchored surface-anchored adhesin with a variable-length region of triple helix-forming collagen-like Gly-Xaa-Xaa repeats. Pssm-ID: 468478 [Multi-domain] Cd Length: 440 Bit Score: 71.47 E-value: 1.14e-12
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
452-507 | 5.05e-12 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 61.74 E-value: 5.05e-12
|
||||||||||
gly_rich_SclB | NF038329 | LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like ... |
762-855 | 2.41e-10 | ||||||
LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like protein 2) is an LPXTG-anchored surface-anchored adhesin with a variable-length region of triple helix-forming collagen-like Gly-Xaa-Xaa repeats. Pssm-ID: 468478 [Multi-domain] Cd Length: 440 Bit Score: 63.77 E-value: 2.41e-10
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
765-819 | 4.93e-09 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 53.27 E-value: 4.93e-09
|
||||||||||
gly_rich_SclB | NF038329 | LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like ... |
767-855 | 1.50e-08 | ||||||
LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like protein 2) is an LPXTG-anchored surface-anchored adhesin with a variable-length region of triple helix-forming collagen-like Gly-Xaa-Xaa repeats. Pssm-ID: 468478 [Multi-domain] Cd Length: 440 Bit Score: 58.38 E-value: 1.50e-08
|
||||||||||
pyocin_knob | cd19958 | knob domain of R1 and R2 pyocins and similar domains; The knob domain is present as a tandemly ... |
896-982 | 7.23e-05 | ||||||
knob domain of R1 and R2 pyocins and similar domains; The knob domain is present as a tandemly repeated structural domain in R-type pyocins, which are high-molecular weight bacteriocins produced by some strains of Pseudomonas aeruginosa to specifically kill other strains of the same species. R-type pyocins are structurally similar to simple contractile tails, such as those of phage P2 and Mu, and they punch a hole in the bacterial envelope to efficiently kill target cells. The second knob domain may contain regions responsible for determining the killing spectrum. Knob-like domains occur in host-recognition and binding proteins of, not only pyocins, but also phages, such as in phage K1F endosialidase (not represented by this model), where it may interact with sialic acid, the cell surface molecule that is recognized during infection. Pssm-ID: 410997 [Multi-domain] Cd Length: 80 Bit Score: 41.94 E-value: 7.23e-05
|
||||||||||
PHA03169 | PHA03169 | hypothetical protein; Provisional |
377-509 | 1.63e-04 | ||||||
hypothetical protein; Provisional Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 45.35 E-value: 1.63e-04
|
||||||||||
Name | Accession | Description | Interval | E-value | ||||||
Sipho_Gp37 | pfam14594 | Siphovirus ReqiPepy6 Gp37-like protein; This family includes numerous phage proteins from ... |
18-342 | 2.62e-115 | ||||||
Siphovirus ReqiPepy6 Gp37-like protein; This family includes numerous phage proteins from Siphoviruses. The function of this protein is uncertain, but it is related to pfam06605. In Rhodococcus phage ReqiPepy6 this protein is called Gp37. Pssm-ID: 434058 Cd Length: 336 Bit Score: 358.19 E-value: 2.62e-115
|
||||||||||
gly_rich_SclB | NF038329 | LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like ... |
412-706 | 1.53e-32 | ||||||
LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like protein 2) is an LPXTG-anchored surface-anchored adhesin with a variable-length region of triple helix-forming collagen-like Gly-Xaa-Xaa repeats. Pssm-ID: 468478 [Multi-domain] Cd Length: 440 Bit Score: 131.95 E-value: 1.53e-32
|
||||||||||
gly_rich_SclB | NF038329 | LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like ... |
635-821 | 2.71e-28 | ||||||
LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like protein 2) is an LPXTG-anchored surface-anchored adhesin with a variable-length region of triple helix-forming collagen-like Gly-Xaa-Xaa repeats. Pssm-ID: 468478 [Multi-domain] Cd Length: 440 Bit Score: 119.24 E-value: 2.71e-28
|
||||||||||
gly_rich_SclB | NF038329 | LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like ... |
636-819 | 1.50e-27 | ||||||
LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like protein 2) is an LPXTG-anchored surface-anchored adhesin with a variable-length region of triple helix-forming collagen-like Gly-Xaa-Xaa repeats. Pssm-ID: 468478 [Multi-domain] Cd Length: 440 Bit Score: 116.93 E-value: 1.50e-27
|
||||||||||
SPT5 | COG5164 | Transcription elongation factor SPT5 [Transcription]; |
636-938 | 2.64e-15 | ||||||
Transcription elongation factor SPT5 [Transcription]; Pssm-ID: 444063 [Multi-domain] Cd Length: 495 Bit Score: 80.07 E-value: 2.64e-15
|
||||||||||
SPT5 | COG5164 | Transcription elongation factor SPT5 [Transcription]; |
409-706 | 8.10e-15 | ||||||
Transcription elongation factor SPT5 [Transcription]; Pssm-ID: 444063 [Multi-domain] Cd Length: 495 Bit Score: 78.53 E-value: 8.10e-15
|
||||||||||
SPT5 | COG5164 | Transcription elongation factor SPT5 [Transcription]; |
635-828 | 1.90e-13 | ||||||
Transcription elongation factor SPT5 [Transcription]; Pssm-ID: 444063 [Multi-domain] Cd Length: 495 Bit Score: 73.91 E-value: 1.90e-13
|
||||||||||
gly_rich_SclB | NF038329 | LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like ... |
412-506 | 1.14e-12 | ||||||
LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like protein 2) is an LPXTG-anchored surface-anchored adhesin with a variable-length region of triple helix-forming collagen-like Gly-Xaa-Xaa repeats. Pssm-ID: 468478 [Multi-domain] Cd Length: 440 Bit Score: 71.47 E-value: 1.14e-12
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
452-507 | 5.05e-12 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 61.74 E-value: 5.05e-12
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
443-498 | 5.96e-12 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 61.36 E-value: 5.96e-12
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
646-703 | 1.37e-11 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 60.20 E-value: 1.37e-11
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
446-503 | 1.48e-11 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 60.20 E-value: 1.48e-11
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
419-474 | 1.93e-11 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 59.81 E-value: 1.93e-11
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
413-470 | 4.17e-11 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 59.04 E-value: 4.17e-11
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
440-494 | 6.47e-11 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 58.66 E-value: 6.47e-11
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
437-491 | 7.72e-11 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 58.27 E-value: 7.72e-11
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
428-483 | 1.69e-10 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 57.12 E-value: 1.69e-10
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
422-480 | 1.72e-10 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 57.12 E-value: 1.72e-10
|
||||||||||
gly_rich_SclB | NF038329 | LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like ... |
762-855 | 2.41e-10 | ||||||
LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like protein 2) is an LPXTG-anchored surface-anchored adhesin with a variable-length region of triple helix-forming collagen-like Gly-Xaa-Xaa repeats. Pssm-ID: 468478 [Multi-domain] Cd Length: 440 Bit Score: 63.77 E-value: 2.41e-10
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
431-485 | 4.95e-10 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 55.96 E-value: 4.95e-10
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
413-462 | 8.90e-10 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 55.19 E-value: 8.90e-10
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
455-509 | 8.99e-10 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 55.19 E-value: 8.99e-10
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
411-464 | 1.23e-09 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 54.81 E-value: 1.23e-09
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
765-819 | 4.93e-09 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 53.27 E-value: 4.93e-09
|
||||||||||
gly_rich_SclB | NF038329 | LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like ... |
767-855 | 1.50e-08 | ||||||
LPXTG-anchored collagen-like adhesin Scl2/SclB; SclB (or Scl2 - streptococcal collagen-like protein 2) is an LPXTG-anchored surface-anchored adhesin with a variable-length region of triple helix-forming collagen-like Gly-Xaa-Xaa repeats. Pssm-ID: 468478 [Multi-domain] Cd Length: 440 Bit Score: 58.38 E-value: 1.50e-08
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
637-688 | 1.55e-08 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 51.73 E-value: 1.55e-08
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
464-510 | 2.90e-08 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 50.96 E-value: 2.90e-08
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
759-814 | 3.64e-08 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 50.57 E-value: 3.64e-08
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
768-821 | 9.41e-08 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 49.41 E-value: 9.41e-08
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
658-706 | 1.52e-07 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 49.03 E-value: 1.52e-07
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
636-675 | 1.13e-06 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 46.33 E-value: 1.13e-06
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
758-805 | 2.06e-06 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 45.56 E-value: 2.06e-06
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
637-677 | 5.79e-06 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 44.41 E-value: 5.79e-06
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
412-450 | 1.03e-05 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 43.64 E-value: 1.03e-05
|
||||||||||
pyocin_knob | cd19958 | knob domain of R1 and R2 pyocins and similar domains; The knob domain is present as a tandemly ... |
896-982 | 7.23e-05 | ||||||
knob domain of R1 and R2 pyocins and similar domains; The knob domain is present as a tandemly repeated structural domain in R-type pyocins, which are high-molecular weight bacteriocins produced by some strains of Pseudomonas aeruginosa to specifically kill other strains of the same species. R-type pyocins are structurally similar to simple contractile tails, such as those of phage P2 and Mu, and they punch a hole in the bacterial envelope to efficiently kill target cells. The second knob domain may contain regions responsible for determining the killing spectrum. Knob-like domains occur in host-recognition and binding proteins of, not only pyocins, but also phages, such as in phage K1F endosialidase (not represented by this model), where it may interact with sialic acid, the cell surface molecule that is recognized during infection. Pssm-ID: 410997 [Multi-domain] Cd Length: 80 Bit Score: 41.94 E-value: 7.23e-05
|
||||||||||
PHA03169 | PHA03169 | hypothetical protein; Provisional |
377-509 | 1.63e-04 | ||||||
hypothetical protein; Provisional Pssm-ID: 223003 [Multi-domain] Cd Length: 413 Bit Score: 45.35 E-value: 1.63e-04
|
||||||||||
Pro-rich | pfam15240 | Proline-rich protein; This family includes several eukaryotic proline-rich proteins. |
414-508 | 2.58e-04 | ||||||
Proline-rich protein; This family includes several eukaryotic proline-rich proteins. Pssm-ID: 464580 [Multi-domain] Cd Length: 167 Bit Score: 42.72 E-value: 2.58e-04
|
||||||||||
Collagen | pfam01391 | Collagen triple helix repeat (20 copies); Members of this family belong to the collagen ... |
679-784 | 9.62e-03 | ||||||
Collagen triple helix repeat (20 copies); Members of this family belong to the collagen superfamily. Collagens are generally extracellular structural proteins involved in formation of connective tissue structure. The alignment contains 20 copies of the G-X-Y repeat that forms a triple helix. The first position of the repeat is glycine, the second and third positions can be any residue but are frequently proline and hydroxy-proline. Collagens are post translationally modified by proline hydroxylase to form the hydroxy-proline residues. Defective hydroxylation is the cause of scurvy. Some members of the collagen superfamily are not involved in connective tissue structure but share the same triple helical structure. The family includes bacterial collagen-like triple-helix repeat proteins. Pssm-ID: 460189 [Multi-domain] Cd Length: 57 Bit Score: 35.55 E-value: 9.62e-03
|
||||||||||
Blast search parameters | ||||
|